函数下半连续的支点相对于许多粘性凹形函数

Валентин Викентьевич Гороховик, А. С. Тыкун
{"title":"函数下半连续的支点相对于许多粘性凹形函数","authors":"Валентин Викентьевич Гороховик, А. С. Тыкун","doi":"10.29235/1561-8323-2019-63-6-647-653","DOIUrl":null,"url":null,"abstract":"For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"10 1","pages":"647-653"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Опорные точки полунепрерывных снизу функций относительно множества липшицевых вогнутых функций\",\"authors\":\"Валентин Викентьевич Гороховик, А. С. Тыкун\",\"doi\":\"10.29235/1561-8323-2019-63-6-647-653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"10 1\",\"pages\":\"647-653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2019-63-6-647-653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2019-63-6-647-653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于赋范向量空间上的函数,我们引入了一个新的LC -凸性的概念,推广了经典凸函数的概念。如果一个函数可以表示为Lipschitz凹函数子集的上包络,则称为LC -凸函数。证明了该函数是LC -凸的当且仅当它是下半连续的,并且由一个Lipschitz函数从下有界。作为经典凸函数的整体子微分的推广,我们引入了函数在给定点处支持的LC -次要点集和函数的LC -支撑点集,然后利用它们推导出非光滑函数的整体极小点的判据和全局极大点的必要条件。本文的一个重要结果是证明了对于LC -凸函数,LC -支撑点集合在其有效区域内是密集的。这一结果将著名的关于经典凸下半连续函数的子微分存在性的Brondsted - Rockafellar定理推广到更广泛的下半连续函数,并回溯到经典凸分析中最重要的结果之一——关于闭凸集边界支点密度的Bishop-Phelps定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Опорные точки полунепрерывных снизу функций относительно множества липшицевых вогнутых функций
For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信