{"title":"函数下半连续的支点相对于许多粘性凹形函数","authors":"Валентин Викентьевич Гороховик, А. С. Тыкун","doi":"10.29235/1561-8323-2019-63-6-647-653","DOIUrl":null,"url":null,"abstract":"For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"10 1","pages":"647-653"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Опорные точки полунепрерывных снизу функций относительно множества липшицевых вогнутых функций\",\"authors\":\"Валентин Викентьевич Гороховик, А. С. Тыкун\",\"doi\":\"10.29235/1561-8323-2019-63-6-647-653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"10 1\",\"pages\":\"647-653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2019-63-6-647-653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2019-63-6-647-653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Опорные точки полунепрерывных снизу функций относительно множества липшицевых вогнутых функций
For the functions defined on normed vector spaces, we introduce a new notion of the LC -convexity that generalizes the classical notion of convex functions. A function is called to be LC -convex if it can be represented as the upper envelope of some subset of Lipschitz concave functions. It is proved that the function is LC -convex if and only if it is lower semicontinuous and, in addition, it is bounded from below by a Lipschitz function. As a generalization of a global subdifferential of a classically convex function, we introduce the set of LC -minorants supported to a function at a given point and the set of LC -support points of a function that are then used to derive a criterion for global minimum points and a necessary condition for global maximum points of nonsmooth functions. An important result of the article is to prove that for a LC - convex function, the set of LC -support points is dense in its effective domain. This result extends the well-known Brondsted– Rockafellar theorem on the existence of the sub-differential for classically convex lower semicontinuous functions to a wider class of lower semicontinuous functions and goes back to the one of the most important results of the classical convex analysis – the Bishop–Phelps theorem on the density of support points in the boundary of a closed convex set.