数值海浪盆(NOW): FSRU系泊设计分析的数值解

Jang-Whan Kim, Hyunchul Jang, H. Lim, L. Lai, A. Latifah, E. Auburtin, N. Tcherniguin, François Pétrié
{"title":"数值海浪盆(NOW): FSRU系泊设计分析的数值解","authors":"Jang-Whan Kim, Hyunchul Jang, H. Lim, L. Lai, A. Latifah, E. Auburtin, N. Tcherniguin, François Pétrié","doi":"10.1115/omae2021-63885","DOIUrl":null,"url":null,"abstract":"\n A numerical solution is proposed for the design analysis of the mooring system of an FSRU in shallow water. Previously. such analysis relied on second-order diffraction theory with viscous damping empirically calibrated from physical model tests. However, both experimental and theoretical methods had to introduce uncertainties in the predicted mooring load because of their physical and theoretical limitations. A complicated procedure had to be introduced to derive design loads considering the uncertainties and limitations. The proposed numerical solutions are developed to minimize those uncertainties by introducing the state-of-the-art numerical tools to accurately model the flow field near the FSRU and the surrounding wave field. A CFD-based numerical wave basin, MrNWB, and a potential-based higher-order Boussinesq wave model, HAWASSI, are coupled together to simulate the near- and outer-field free-surface flows around the FSRU hull.\n This paper describes the framework of the proposed numerical method, followed by preliminary verifications of the accuracy and effectiveness of the proposed solution. A benchmark model test of an FSRU moored in a shallow sloping beach is used to validate the generation of the low-frequency wave and the slow-drift motion of FSRU from CFD simulation. The numerical results show significant improvement in the low-frequency FSRU responses compared to the conventional theoretical methods.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Ocean Wave-Basin (NOW): A Numerical Solution for FSRU Mooring Design Analysis\",\"authors\":\"Jang-Whan Kim, Hyunchul Jang, H. Lim, L. Lai, A. Latifah, E. Auburtin, N. Tcherniguin, François Pétrié\",\"doi\":\"10.1115/omae2021-63885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A numerical solution is proposed for the design analysis of the mooring system of an FSRU in shallow water. Previously. such analysis relied on second-order diffraction theory with viscous damping empirically calibrated from physical model tests. However, both experimental and theoretical methods had to introduce uncertainties in the predicted mooring load because of their physical and theoretical limitations. A complicated procedure had to be introduced to derive design loads considering the uncertainties and limitations. The proposed numerical solutions are developed to minimize those uncertainties by introducing the state-of-the-art numerical tools to accurately model the flow field near the FSRU and the surrounding wave field. A CFD-based numerical wave basin, MrNWB, and a potential-based higher-order Boussinesq wave model, HAWASSI, are coupled together to simulate the near- and outer-field free-surface flows around the FSRU hull.\\n This paper describes the framework of the proposed numerical method, followed by preliminary verifications of the accuracy and effectiveness of the proposed solution. A benchmark model test of an FSRU moored in a shallow sloping beach is used to validate the generation of the low-frequency wave and the slow-drift motion of FSRU from CFD simulation. The numerical results show significant improvement in the low-frequency FSRU responses compared to the conventional theoretical methods.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-63885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-63885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种浅水浮潜装置系泊系统设计分析的数值解。之前。这种分析依赖于二级衍射理论和粘性阻尼,由物理模型试验经验校准。然而,由于物理和理论的局限性,实验和理论方法都不得不在预测系泊载荷时引入不确定性。考虑到不确定性和局限性,必须引入复杂的程序来推导设计载荷。通过引入最先进的数值工具来精确模拟FSRU附近的流场和周围的波场,提出了数值解决方案,以尽量减少这些不确定性。基于cfd的数值波盆MrNWB和基于势的高阶Boussinesq波模型HAWASSI耦合在一起,模拟FSRU船体周围的近场和外场自由表面流动。本文描述了所提出的数值方法的框架,然后对所提出的解决方案的准确性和有效性进行了初步验证。通过在浅坡滩锚泊FSRU的基准模型试验,验证了CFD模拟中FSRU低频波的产生和慢漂运动。数值结果表明,与传统的理论方法相比,FSRU的低频响应有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Ocean Wave-Basin (NOW): A Numerical Solution for FSRU Mooring Design Analysis
A numerical solution is proposed for the design analysis of the mooring system of an FSRU in shallow water. Previously. such analysis relied on second-order diffraction theory with viscous damping empirically calibrated from physical model tests. However, both experimental and theoretical methods had to introduce uncertainties in the predicted mooring load because of their physical and theoretical limitations. A complicated procedure had to be introduced to derive design loads considering the uncertainties and limitations. The proposed numerical solutions are developed to minimize those uncertainties by introducing the state-of-the-art numerical tools to accurately model the flow field near the FSRU and the surrounding wave field. A CFD-based numerical wave basin, MrNWB, and a potential-based higher-order Boussinesq wave model, HAWASSI, are coupled together to simulate the near- and outer-field free-surface flows around the FSRU hull. This paper describes the framework of the proposed numerical method, followed by preliminary verifications of the accuracy and effectiveness of the proposed solution. A benchmark model test of an FSRU moored in a shallow sloping beach is used to validate the generation of the low-frequency wave and the slow-drift motion of FSRU from CFD simulation. The numerical results show significant improvement in the low-frequency FSRU responses compared to the conventional theoretical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信