{"title":"非负弯曲RCD空间中平均凸子集的刚性与平均曲率界的稳定性","authors":"C. Ketterer","doi":"10.1142/s1793525323500358","DOIUrl":null,"url":null,"abstract":"We prove splitting theorems for mean convex open subsets in RCD (Riemannian curvature-dimension) spaces that extend results by Kasue, Croke and Kleiner for Riemannian manifolds with boundary to a non-smooth setting. A corollary is for instance Frankel's theorem. Then, we prove that our notion of mean curvature bounded from below for the boundary of an open subset is stable w.r.t. to uniform convergence of the corresponding boundary distance function. We apply this to prove almost rigidity theorems for uniform domains whose boundary has a lower mean curvature bound.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rigidity of mean convex subsets in non-negatively curved RCD spaces and stability of mean curvature bounds\",\"authors\":\"C. Ketterer\",\"doi\":\"10.1142/s1793525323500358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove splitting theorems for mean convex open subsets in RCD (Riemannian curvature-dimension) spaces that extend results by Kasue, Croke and Kleiner for Riemannian manifolds with boundary to a non-smooth setting. A corollary is for instance Frankel's theorem. Then, we prove that our notion of mean curvature bounded from below for the boundary of an open subset is stable w.r.t. to uniform convergence of the corresponding boundary distance function. We apply this to prove almost rigidity theorems for uniform domains whose boundary has a lower mean curvature bound.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500358\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500358","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rigidity of mean convex subsets in non-negatively curved RCD spaces and stability of mean curvature bounds
We prove splitting theorems for mean convex open subsets in RCD (Riemannian curvature-dimension) spaces that extend results by Kasue, Croke and Kleiner for Riemannian manifolds with boundary to a non-smooth setting. A corollary is for instance Frankel's theorem. Then, we prove that our notion of mean curvature bounded from below for the boundary of an open subset is stable w.r.t. to uniform convergence of the corresponding boundary distance function. We apply this to prove almost rigidity theorems for uniform domains whose boundary has a lower mean curvature bound.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.