灵活和动态的妥协,有效的建议

Saurabh Gupta, Sutanu Chakraborti
{"title":"灵活和动态的妥协,有效的建议","authors":"Saurabh Gupta, Sutanu Chakraborti","doi":"10.1145/2505515.2507893","DOIUrl":null,"url":null,"abstract":"Conversational Recommendation mimics the kind of dialog that takes between a customer and a shopkeeper involving multiple interactions where the user can give feedback at every interaction as opposed to Single Shot Retrieval, which corresponds to a scheme where the system retrieves a set of items in response to a user query in a single interaction. Compromise refers to a particular user preference which the recommender system failed to satisfy. But in the context of conversational systems, where the user's preferences keep on evolving as she interacts with the system, what constitutes as a compromise for her also keeps on changing. Typically, in Single Shot retrieval, the notion of compromise is characterized by the assignment of a particular feature to a particular dominance group such as MIB (higher value is better) or LIB (lower value is better) and this assignment remains true for all the users who use the system. In this paper, we propose a way to realize the notion of compromise in a conversational setting. Our approach, Flexi-Comp, introduces the notion of dynamically assigning a feature to two dominance groups simultaneously which is then used to redefine the notion of compromise. We show experimentally that a utility function based on this notion of compromise outperforms the existing conversational recommenders in terms of recommendation efficiency.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible and dynamic compromises for effective recommendations\",\"authors\":\"Saurabh Gupta, Sutanu Chakraborti\",\"doi\":\"10.1145/2505515.2507893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational Recommendation mimics the kind of dialog that takes between a customer and a shopkeeper involving multiple interactions where the user can give feedback at every interaction as opposed to Single Shot Retrieval, which corresponds to a scheme where the system retrieves a set of items in response to a user query in a single interaction. Compromise refers to a particular user preference which the recommender system failed to satisfy. But in the context of conversational systems, where the user's preferences keep on evolving as she interacts with the system, what constitutes as a compromise for her also keeps on changing. Typically, in Single Shot retrieval, the notion of compromise is characterized by the assignment of a particular feature to a particular dominance group such as MIB (higher value is better) or LIB (lower value is better) and this assignment remains true for all the users who use the system. In this paper, we propose a way to realize the notion of compromise in a conversational setting. Our approach, Flexi-Comp, introduces the notion of dynamically assigning a feature to two dominance groups simultaneously which is then used to redefine the notion of compromise. We show experimentally that a utility function based on this notion of compromise outperforms the existing conversational recommenders in terms of recommendation efficiency.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2507893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

会话推荐模仿了一种顾客和店主之间的对话,其中涉及多个交互,用户可以在每次交互中给出反馈,而不是单次检索,它对应于系统在单个交互中检索一组项目以响应用户查询的方案。折衷是指推荐系统无法满足的特定用户偏好。但是在会话系统的环境中,用户的偏好随着她与系统的交互而不断变化,对她来说,什么是妥协也在不断变化。通常,在单次检索中,折衷概念的特征是将特定特征分配给特定的优势组,例如MIB(值越高越好)或LIB(值越低越好),并且该分配对使用系统的所有用户都是正确的。在本文中,我们提出了一种在会话环境中实现妥协概念的方法。我们的方法,flex - comp,引入了动态地将一个特性同时分配给两个优势群体的概念,然后用于重新定义妥协的概念。我们通过实验证明,基于妥协概念的效用函数在推荐效率方面优于现有的会话推荐器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and dynamic compromises for effective recommendations
Conversational Recommendation mimics the kind of dialog that takes between a customer and a shopkeeper involving multiple interactions where the user can give feedback at every interaction as opposed to Single Shot Retrieval, which corresponds to a scheme where the system retrieves a set of items in response to a user query in a single interaction. Compromise refers to a particular user preference which the recommender system failed to satisfy. But in the context of conversational systems, where the user's preferences keep on evolving as she interacts with the system, what constitutes as a compromise for her also keeps on changing. Typically, in Single Shot retrieval, the notion of compromise is characterized by the assignment of a particular feature to a particular dominance group such as MIB (higher value is better) or LIB (lower value is better) and this assignment remains true for all the users who use the system. In this paper, we propose a way to realize the notion of compromise in a conversational setting. Our approach, Flexi-Comp, introduces the notion of dynamically assigning a feature to two dominance groups simultaneously which is then used to redefine the notion of compromise. We show experimentally that a utility function based on this notion of compromise outperforms the existing conversational recommenders in terms of recommendation efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信