非线性半无穷规划的交换方法

Liping Zhang, S. Du
{"title":"非线性半无穷规划的交换方法","authors":"Liping Zhang, S. Du","doi":"10.1142/s0217595921500433","DOIUrl":null,"url":null,"abstract":"A new exchange method is presented for semi-infinite optimization problems with polyhedron constraints. The basic idea is to use an active set strategy as exchange rule to construct an approximate problem with finitely many constraints at each iteration. Under mild conditions, we prove that the proposed algorithm terminates in a finite number of iterations and guarantees that the solution of the resulting approximate problem at final iteration converges to the solution of the original problem within arbitrarily given tolerance. Numerical results indicate that the proposed algorithm is efficient and promising.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Exchange Methods for Nonlinear Semi-Infinite Programs\",\"authors\":\"Liping Zhang, S. Du\",\"doi\":\"10.1142/s0217595921500433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new exchange method is presented for semi-infinite optimization problems with polyhedron constraints. The basic idea is to use an active set strategy as exchange rule to construct an approximate problem with finitely many constraints at each iteration. Under mild conditions, we prove that the proposed algorithm terminates in a finite number of iterations and guarantees that the solution of the resulting approximate problem at final iteration converges to the solution of the original problem within arbitrarily given tolerance. Numerical results indicate that the proposed algorithm is efficient and promising.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595921500433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595921500433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有多面体约束的半无限优化问题,提出了一种新的交换方法。其基本思想是利用活动集策略作为交换规则,在每次迭代中构造一个具有有限多个约束的近似问题。在温和条件下,我们证明了所提出的算法终止于有限次迭代,并保证在任意给定的公差范围内,最终迭代得到的近似问题的解收敛于原问题的解。数值结果表明,该算法是有效的,具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Exchange Methods for Nonlinear Semi-Infinite Programs
A new exchange method is presented for semi-infinite optimization problems with polyhedron constraints. The basic idea is to use an active set strategy as exchange rule to construct an approximate problem with finitely many constraints at each iteration. Under mild conditions, we prove that the proposed algorithm terminates in a finite number of iterations and guarantees that the solution of the resulting approximate problem at final iteration converges to the solution of the original problem within arbitrarily given tolerance. Numerical results indicate that the proposed algorithm is efficient and promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信