关于连通图的广义彩虹连接及其边数的一个注记

Anh Nguyen Thi Thuy, Duyen Le Thi
{"title":"关于连通图的广义彩虹连接及其边数的一个注记","authors":"Anh Nguyen Thi Thuy, Duyen Le Thi","doi":"10.18173/2354-1059.2021-0041","DOIUrl":null,"url":null,"abstract":"Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.","PeriodicalId":17007,"journal":{"name":"Journal of Science Natural Science","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON GENERALIZED RAINBOW CONNECTION OF CONNECTED GRAPHS AND THEIR NUMBER OF EDGES\",\"authors\":\"Anh Nguyen Thi Thuy, Duyen Le Thi\",\"doi\":\"10.18173/2354-1059.2021-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.\",\"PeriodicalId\":17007,\"journal\":{\"name\":\"Journal of Science Natural Science\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18173/2354-1059.2021-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18173/2354-1059.2021-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设l≥1,k≥1为两个整数。给定一个边色连通图G,如果图G中每个长度不超过1 + 1的子路径都是彩虹,则图G中的路径P称为l-彩虹路径。图G称为(k, l)-彩虹连通,如果G中的任意两个顶点通过至少k对内部顶点不相交的l-彩虹路径相连。为了使G (k, l)-彩虹连接,所需的最小颜色数称为G的(k, l)-彩虹连接数,用rock,l(G)表示。在本文中,我们首先关注的是根据连通图的大小改进(1,1)-彩虹连接数的上界。利用这个结果,我们描述了所有具有大(1,2)-彩虹连接数的连接图。此外,我们还确定了包含切边序列的连通图G中的(1,1)-彩虹连接数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NOTE ON GENERALIZED RAINBOW CONNECTION OF CONNECTED GRAPHS AND THEIR NUMBER OF EDGES
Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信