法诺和弱法诺黑森伯格品种

IF 0.8 3区 数学 Q2 MATHEMATICS
Hiraku Abe, Naoki Fujita, Haozhi Zeng
{"title":"法诺和弱法诺黑森伯格品种","authors":"Hiraku Abe, Naoki Fujita, Haozhi Zeng","doi":"10.1307/mmj/20205971","DOIUrl":null,"url":null,"abstract":"Regular semisimple Hessenberg varieties are smooth subvarieties of the flag variety, and their examples contain the flag variety itself and the permutohedral variety which is a toric variety. We give a complete classification of Fano and weak Fano regular semisimple Hessenberg varieties in type A in terms of combinatorics of Hessenberg functions. In particular, we show that if the anti-canonical bundle of a regular semisimple Hessenberg variety is nef, then it is in fact nef and big.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fano and Weak Fano Hessenberg Varieties\",\"authors\":\"Hiraku Abe, Naoki Fujita, Haozhi Zeng\",\"doi\":\"10.1307/mmj/20205971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular semisimple Hessenberg varieties are smooth subvarieties of the flag variety, and their examples contain the flag variety itself and the permutohedral variety which is a toric variety. We give a complete classification of Fano and weak Fano regular semisimple Hessenberg varieties in type A in terms of combinatorics of Hessenberg functions. In particular, we show that if the anti-canonical bundle of a regular semisimple Hessenberg variety is nef, then it is in fact nef and big.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20205971\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205971","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

正则半单Hessenberg变异体是旗变异体的光滑亚变异体,其实例包括旗变异体本身和环变异体。用Hessenberg函数的组合学给出了a型的Fano和弱Fano正则半单Hessenberg变分的完全分类。特别地,我们证明了如果正则半简单Hessenberg变的反正则束是nef,那么它实际上是nef且大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fano and Weak Fano Hessenberg Varieties
Regular semisimple Hessenberg varieties are smooth subvarieties of the flag variety, and their examples contain the flag variety itself and the permutohedral variety which is a toric variety. We give a complete classification of Fano and weak Fano regular semisimple Hessenberg varieties in type A in terms of combinatorics of Hessenberg functions. In particular, we show that if the anti-canonical bundle of a regular semisimple Hessenberg variety is nef, then it is in fact nef and big.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信