手写体签名验证的逆判别网络

Ping Wei, Huan Li, Ping Hu
{"title":"手写体签名验证的逆判别网络","authors":"Ping Wei, Huan Li, Ping Hu","doi":"10.1109/CVPR.2019.00591","DOIUrl":null,"url":null,"abstract":"Handwritten signature verification is an important technique for many financial, commercial, and forensic applications. In this paper, we propose an inverse discriminative network (IDN) for writer-independent handwritten signature verification, which aims to determine whether a test signature is genuine or forged compared to the reference signature. The IDN model contains four weight-shared neural network streams, of which two receiving the original signature images are the discriminative streams and the other two addressing the gray-inverted images form the inverse streams. Multiple paths of attention modules connect the discriminative streams and the inverse streams to propagate messages. With the inverse streams and the multi-path attention modules, the IDN model intensifies the effective information of signature verification. Since there was no proper Chinese signature dataset in the community, we collected a large-scale Chinese signature dataset with approximately 29,000 images of 749 individuals’ signatures. We test our method on the Chinese signature dataset and other three signature datasets of different languages: CEDAR, BHSig-B, and BHSig-H. Experiments prove the strength and potential of our method.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"46 1","pages":"5757-5765"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Inverse Discriminative Networks for Handwritten Signature Verification\",\"authors\":\"Ping Wei, Huan Li, Ping Hu\",\"doi\":\"10.1109/CVPR.2019.00591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten signature verification is an important technique for many financial, commercial, and forensic applications. In this paper, we propose an inverse discriminative network (IDN) for writer-independent handwritten signature verification, which aims to determine whether a test signature is genuine or forged compared to the reference signature. The IDN model contains four weight-shared neural network streams, of which two receiving the original signature images are the discriminative streams and the other two addressing the gray-inverted images form the inverse streams. Multiple paths of attention modules connect the discriminative streams and the inverse streams to propagate messages. With the inverse streams and the multi-path attention modules, the IDN model intensifies the effective information of signature verification. Since there was no proper Chinese signature dataset in the community, we collected a large-scale Chinese signature dataset with approximately 29,000 images of 749 individuals’ signatures. We test our method on the Chinese signature dataset and other three signature datasets of different languages: CEDAR, BHSig-B, and BHSig-H. Experiments prove the strength and potential of our method.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"46 1\",\"pages\":\"5757-5765\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

手写签名验证是许多金融、商业和法医学应用的重要技术。本文提出了一种用于手写签名验证的反判别网络(IDN),该网络旨在确定测试签名与参考签名相比是真实的还是伪造的。IDN模型包含4个权值共享的神经网络流,其中接收原始签名图像的2个为判别流,处理灰度反转图像的2个为逆流。注意模块的多条路径连接判别流和逆流来传播消息。IDN模型通过引入反向流和多路径关注模块,增强了签名验证的有效信息。由于社区中没有合适的中文签名数据集,我们收集了一个包含约29,000张749个人签名图像的大规模中文签名数据集。我们在中文签名数据集和其他三种不同语言的签名数据集(CEDAR、BHSig-B和BHSig-H)上测试了我们的方法。实验证明了该方法的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Discriminative Networks for Handwritten Signature Verification
Handwritten signature verification is an important technique for many financial, commercial, and forensic applications. In this paper, we propose an inverse discriminative network (IDN) for writer-independent handwritten signature verification, which aims to determine whether a test signature is genuine or forged compared to the reference signature. The IDN model contains four weight-shared neural network streams, of which two receiving the original signature images are the discriminative streams and the other two addressing the gray-inverted images form the inverse streams. Multiple paths of attention modules connect the discriminative streams and the inverse streams to propagate messages. With the inverse streams and the multi-path attention modules, the IDN model intensifies the effective information of signature verification. Since there was no proper Chinese signature dataset in the community, we collected a large-scale Chinese signature dataset with approximately 29,000 images of 749 individuals’ signatures. We test our method on the Chinese signature dataset and other three signature datasets of different languages: CEDAR, BHSig-B, and BHSig-H. Experiments prove the strength and potential of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信