关于印度尼西亚生物医学出版物下游潜力的文本分类

Mesnan Silalahi, R. Hardiyati, I. M. Nadhiroh, T. Handayani, M. Amelia, R. Rahmaida
{"title":"关于印度尼西亚生物医学出版物下游潜力的文本分类","authors":"Mesnan Silalahi, R. Hardiyati, I. M. Nadhiroh, T. Handayani, M. Amelia, R. Rahmaida","doi":"10.1109/ICOIACT.2018.8350778","DOIUrl":null,"url":null,"abstract":"This study has the purpose to investigate the potential to downstreaming of biomedicine researches in Indonesia based on scientific publications. It is therefore necessary to extract unstructured information in natural language-based scientific publications. This paper reports result from an investigation on a classification model of the downstreaming potential of biomedical research publications in Indonesia based on text-mining. The predictive computational model was built by testing three classifier algorithms namely KNN, Naive Bayes and SVM, where the results show that the Naive Bayes-based model performs best.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"11 1","pages":"515-519"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A text classification on the downstreaming potential of biomedicine publications in Indonesia\",\"authors\":\"Mesnan Silalahi, R. Hardiyati, I. M. Nadhiroh, T. Handayani, M. Amelia, R. Rahmaida\",\"doi\":\"10.1109/ICOIACT.2018.8350778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has the purpose to investigate the potential to downstreaming of biomedicine researches in Indonesia based on scientific publications. It is therefore necessary to extract unstructured information in natural language-based scientific publications. This paper reports result from an investigation on a classification model of the downstreaming potential of biomedical research publications in Indonesia based on text-mining. The predictive computational model was built by testing three classifier algorithms namely KNN, Naive Bayes and SVM, where the results show that the Naive Bayes-based model performs best.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"11 1\",\"pages\":\"515-519\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项研究的目的是调查基于科学出版物的印尼生物医学研究的下行潜力。因此,有必要从基于自然语言的科学出版物中提取非结构化信息。本文报告了基于文本挖掘的印度尼西亚生物医学研究出版物下游潜力分类模型的调查结果。通过对KNN、朴素贝叶斯和支持向量机三种分类器算法的测试,建立了预测计算模型,结果表明基于朴素贝叶斯的模型性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A text classification on the downstreaming potential of biomedicine publications in Indonesia
This study has the purpose to investigate the potential to downstreaming of biomedicine researches in Indonesia based on scientific publications. It is therefore necessary to extract unstructured information in natural language-based scientific publications. This paper reports result from an investigation on a classification model of the downstreaming potential of biomedical research publications in Indonesia based on text-mining. The predictive computational model was built by testing three classifier algorithms namely KNN, Naive Bayes and SVM, where the results show that the Naive Bayes-based model performs best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信