在核空间中选择特征的快速方法

Ye Xu, S. Furao, Wei Ping, Jinxi Zhao
{"title":"在核空间中选择特征的快速方法","authors":"Ye Xu, S. Furao, Wei Ping, Jinxi Zhao","doi":"10.1145/2063576.2063677","DOIUrl":null,"url":null,"abstract":"Feature selection is an effective tool to deal with the \"curse of dimensionality\". To cope with the non-separable problem, feature selection in the kernel space has been investigated. However, previous study cannot adequately estimate the intrinsic dimensionality of the kernel space. Thus, it is difficult to accurately preserve the sketch of the kernel space using the learned basis, and the feature selection performance is affected. Moreover, the computing load of the algorithm reaches at least cubic with the number of training data. In this paper, we propose a fast framework to conduct feature selection in the kernel space. By designing a fast kernel subspace learning method, we automatically learn the intrinsic dimensionality and construct an orthogonal basis set of kernel space. The learned basis can accurately preserve the sketch of kernel space. Then backed by the constructed basis, we directly select features in kernel space. The whole proposed framework has a quadratic complexity with the number of training data, which is faster than existing kernel methods for feature selection. We evaluate our work under several typical datasets and find it not only preserves the sketch of the kernel space more accurately but also achieves better classification performance compared with many state-of-the-art methods.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"163 1","pages":"683-692"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"TAKES: a fast method to select features in the kernel space\",\"authors\":\"Ye Xu, S. Furao, Wei Ping, Jinxi Zhao\",\"doi\":\"10.1145/2063576.2063677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an effective tool to deal with the \\\"curse of dimensionality\\\". To cope with the non-separable problem, feature selection in the kernel space has been investigated. However, previous study cannot adequately estimate the intrinsic dimensionality of the kernel space. Thus, it is difficult to accurately preserve the sketch of the kernel space using the learned basis, and the feature selection performance is affected. Moreover, the computing load of the algorithm reaches at least cubic with the number of training data. In this paper, we propose a fast framework to conduct feature selection in the kernel space. By designing a fast kernel subspace learning method, we automatically learn the intrinsic dimensionality and construct an orthogonal basis set of kernel space. The learned basis can accurately preserve the sketch of kernel space. Then backed by the constructed basis, we directly select features in kernel space. The whole proposed framework has a quadratic complexity with the number of training data, which is faster than existing kernel methods for feature selection. We evaluate our work under several typical datasets and find it not only preserves the sketch of the kernel space more accurately but also achieves better classification performance compared with many state-of-the-art methods.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"163 1\",\"pages\":\"683-692\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

特征选择是解决“维数诅咒”的有效工具。为了解决不可分问题,研究了核空间中的特征选择问题。然而,以往的研究不能充分估计核空间的固有维数。因此,利用学习基难以准确地保留核空间的草图,影响了特征选择的性能。随着训练数据量的增加,算法的计算量至少达到三次。本文提出了一种快速的核空间特征选择框架。通过设计一种快速的核子空间学习方法,自动学习核空间的固有维数,构造核空间的正交基集。所学习的基能准确地保留核空间的草图。然后在构造好的基的支持下,直接在核空间中选择特征。整个框架的复杂度随训练数据的数量呈二次型,比现有的核函数特征选择方法更快。我们在几个典型的数据集下评估了我们的工作,发现它不仅更准确地保留了核空间的草图,而且与许多最先进的方法相比,它具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TAKES: a fast method to select features in the kernel space
Feature selection is an effective tool to deal with the "curse of dimensionality". To cope with the non-separable problem, feature selection in the kernel space has been investigated. However, previous study cannot adequately estimate the intrinsic dimensionality of the kernel space. Thus, it is difficult to accurately preserve the sketch of the kernel space using the learned basis, and the feature selection performance is affected. Moreover, the computing load of the algorithm reaches at least cubic with the number of training data. In this paper, we propose a fast framework to conduct feature selection in the kernel space. By designing a fast kernel subspace learning method, we automatically learn the intrinsic dimensionality and construct an orthogonal basis set of kernel space. The learned basis can accurately preserve the sketch of kernel space. Then backed by the constructed basis, we directly select features in kernel space. The whole proposed framework has a quadratic complexity with the number of training data, which is faster than existing kernel methods for feature selection. We evaluate our work under several typical datasets and find it not only preserves the sketch of the kernel space more accurately but also achieves better classification performance compared with many state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信