一维LQG寻的解析解

M. Lefebvre, F. Zitouni
{"title":"一维LQG寻的解析解","authors":"M. Lefebvre, F. Zitouni","doi":"10.1080/21642583.2013.878886","DOIUrl":null,"url":null,"abstract":"The problem of optimally controlling one-dimensional diffusion processes until they leave a given interval is considered. By linearizing the Riccati differential equation satisfied by the derivative of the value function in the so-called linear quadratic Gaussian homing problem, we are able to obtain an exact expression for the solution to the general problem. Particular problems are solved explicitly.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"25 1","pages":"41 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analytical solutions to LQG homing problems in one dimension\",\"authors\":\"M. Lefebvre, F. Zitouni\",\"doi\":\"10.1080/21642583.2013.878886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of optimally controlling one-dimensional diffusion processes until they leave a given interval is considered. By linearizing the Riccati differential equation satisfied by the derivative of the value function in the so-called linear quadratic Gaussian homing problem, we are able to obtain an exact expression for the solution to the general problem. Particular problems are solved explicitly.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":\"25 1\",\"pages\":\"41 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2013.878886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2013.878886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究一维扩散过程的最优控制问题,直到扩散过程离开给定区间。通过对线性二次高斯归巢问题中值函数导数所满足的Riccati微分方程进行线性化,可以得到一般问题解的精确表达式。具体问题得到明确解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solutions to LQG homing problems in one dimension
The problem of optimally controlling one-dimensional diffusion processes until they leave a given interval is considered. By linearizing the Riccati differential equation satisfied by the derivative of the value function in the so-called linear quadratic Gaussian homing problem, we are able to obtain an exact expression for the solution to the general problem. Particular problems are solved explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信