决策树复杂性与块灵敏度和度

Rahul Chugh, Supartha Podder, Swagato Sanyal
{"title":"决策树复杂性与块灵敏度和度","authors":"Rahul Chugh, Supartha Podder, Swagato Sanyal","doi":"10.48550/arXiv.2209.08042","DOIUrl":null,"url":null,"abstract":"Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. It is known that decision tree complexity is bounded above by the cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean functions is quadratic. In this work, we investigate the tightness of the existing cubic upper bounds. We improve the cubic upper bounds for many interesting classes of Boolean functions. We show that for graph properties and for functions with a constant number of alternations, both of the cubic upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call the zebra functions, that comprises Boolean functions where each monotone path from 0^n to 1^n has an equal number of alternations. This class contains the symmetric and monotone functions as its subclasses. We show that for any zebra function, decision tree complexity is at most the square of block sensitivity, and certificate complexity is at most the square of degree. Finally, we show using a lifting theorem of communication complexity by G{\\\"{o}}{\\\"{o}}s, Pitassi and Watson that the task of proving an improved upper bound on the decision tree complexity for all functions is in a sense equivalent to the potentially easier task of proving a similar upper bound on communication complexity for each bi-partition of the input variables, for all functions. In particular, this implies that to bound the decision tree complexity it suffices to bound smaller measures like parity decision tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of models that can be efficiently simulated by communication protocols.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Tree Complexity versus Block Sensitivity and Degree\",\"authors\":\"Rahul Chugh, Supartha Podder, Swagato Sanyal\",\"doi\":\"10.48550/arXiv.2209.08042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. It is known that decision tree complexity is bounded above by the cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean functions is quadratic. In this work, we investigate the tightness of the existing cubic upper bounds. We improve the cubic upper bounds for many interesting classes of Boolean functions. We show that for graph properties and for functions with a constant number of alternations, both of the cubic upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call the zebra functions, that comprises Boolean functions where each monotone path from 0^n to 1^n has an equal number of alternations. This class contains the symmetric and monotone functions as its subclasses. We show that for any zebra function, decision tree complexity is at most the square of block sensitivity, and certificate complexity is at most the square of degree. Finally, we show using a lifting theorem of communication complexity by G{\\\\\\\"{o}}{\\\\\\\"{o}}s, Pitassi and Watson that the task of proving an improved upper bound on the decision tree complexity for all functions is in a sense equivalent to the potentially easier task of proving a similar upper bound on communication complexity for each bi-partition of the input variables, for all functions. In particular, this implies that to bound the decision tree complexity it suffices to bound smaller measures like parity decision tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of models that can be efficiently simulated by communication protocols.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.08042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.08042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

决策树复杂性与布尔函数的各种其他复杂性度量之间的关系是计算复杂性研究的一个蓬勃发展的课题。已知决策树的复杂度由块灵敏度的立体化和多项式次的立体化界定。然而,已知布尔函数见证的决策树复杂度与每个块灵敏度和度之间最广泛的分离是二次的。在这项工作中,我们研究了现有三次上界的紧密性。我们改进了许多有趣的布尔函数的三次上界。我们证明了对于图形性质和具有常数次变换的函数,三次上界都可以改进为二次。我们定义了一类布尔函数,我们称之为斑马函数,它由布尔函数组成,其中从0^n到1^n的每条单调路径都有相同数量的变换。该类包含对称函数和单调函数作为其子类。结果表明,对于任意斑马函数,决策树复杂度不超过块灵敏度的平方,证书复杂度不超过度的平方。最后,我们用G{\"{o}}{\"{o}}s、Pitassi和Watson提出的通信复杂度提升定理表明,为所有函数证明改进的决策树复杂度上界的任务在某种意义上相当于为所有函数的输入变量的每个双划分证明类似的通信复杂度上界的潜在更简单的任务。特别是,这意味着要绑定决策树复杂性,就必须绑定较小的度量,如奇偶性决策树复杂性,子立方体决策树复杂性和决策树秩,这些度量是根据可以通过通信协议有效模拟的模型定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision Tree Complexity versus Block Sensitivity and Degree
Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. It is known that decision tree complexity is bounded above by the cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean functions is quadratic. In this work, we investigate the tightness of the existing cubic upper bounds. We improve the cubic upper bounds for many interesting classes of Boolean functions. We show that for graph properties and for functions with a constant number of alternations, both of the cubic upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call the zebra functions, that comprises Boolean functions where each monotone path from 0^n to 1^n has an equal number of alternations. This class contains the symmetric and monotone functions as its subclasses. We show that for any zebra function, decision tree complexity is at most the square of block sensitivity, and certificate complexity is at most the square of degree. Finally, we show using a lifting theorem of communication complexity by G{\"{o}}{\"{o}}s, Pitassi and Watson that the task of proving an improved upper bound on the decision tree complexity for all functions is in a sense equivalent to the potentially easier task of proving a similar upper bound on communication complexity for each bi-partition of the input variables, for all functions. In particular, this implies that to bound the decision tree complexity it suffices to bound smaller measures like parity decision tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of models that can be efficiently simulated by communication protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信