下一代蜂窝网络的移动小蜂窝部署

Shih-Fan Chou, Te-Chuan Chiu, Ya-Ju Yu, Ai-Chun Pang
{"title":"下一代蜂窝网络的移动小蜂窝部署","authors":"Shih-Fan Chou, Te-Chuan Chiu, Ya-Ju Yu, Ai-Chun Pang","doi":"10.1109/GLOCOM.2014.7037574","DOIUrl":null,"url":null,"abstract":"With the rapid growth of mobile broadband traffic, adopting small cell is a promising trend for operators to improve network capacity with low cost. However, static small cells cannot be flexibly placed to fulfill time/space-varying traffic. The static small cells might stay in idle or under-utilized mode during some time periods, which wastes resources. Therefore, this paper utilizes the mobile small cell concept and studies the deployment problem for mobile small cells. The objective is to maximize the service time provided by mobile small cells for all users. If a finite number of mobile small cells can serve more users for more time, the mobile small cell deployment will have more gains. Specifically, we show an interesting trade-off in the service time maximization. Then, we prove our target problem is NP-hard and propose an efficient mobile small cell deployment algorithm to deal with the trade-off to maximize the total service time. We construct a series of simulations with realistic parameter settings to evaluate the performance of our proposed algorithm. Compared with a static small cell deployment algorithm and a random mobile small cell deployment algorithm, the simulation results show that our proposed scheme can significantly increase the total service time provided for all users.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"26 1","pages":"4852-4857"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Mobile small cell deployment for next generation cellular networks\",\"authors\":\"Shih-Fan Chou, Te-Chuan Chiu, Ya-Ju Yu, Ai-Chun Pang\",\"doi\":\"10.1109/GLOCOM.2014.7037574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of mobile broadband traffic, adopting small cell is a promising trend for operators to improve network capacity with low cost. However, static small cells cannot be flexibly placed to fulfill time/space-varying traffic. The static small cells might stay in idle or under-utilized mode during some time periods, which wastes resources. Therefore, this paper utilizes the mobile small cell concept and studies the deployment problem for mobile small cells. The objective is to maximize the service time provided by mobile small cells for all users. If a finite number of mobile small cells can serve more users for more time, the mobile small cell deployment will have more gains. Specifically, we show an interesting trade-off in the service time maximization. Then, we prove our target problem is NP-hard and propose an efficient mobile small cell deployment algorithm to deal with the trade-off to maximize the total service time. We construct a series of simulations with realistic parameter settings to evaluate the performance of our proposed algorithm. Compared with a static small cell deployment algorithm and a random mobile small cell deployment algorithm, the simulation results show that our proposed scheme can significantly increase the total service time provided for all users.\",\"PeriodicalId\":6492,\"journal\":{\"name\":\"2014 IEEE Global Communications Conference\",\"volume\":\"26 1\",\"pages\":\"4852-4857\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2014.7037574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

随着移动宽带业务的快速增长,采用小蜂窝是运营商以低成本提高网络容量的一个有希望的趋势。然而,静态小单元不能灵活地放置以满足时间/空间变化的流量。静态小单元可能在某些时间段内保持空闲或未充分利用的模式,这会浪费资源。因此,本文利用移动小基站的概念,研究移动小基站的部署问题。目标是使移动小基站为所有用户提供的服务时间最大化。如果有限数量的移动小基站能够在更长的时间内服务更多的用户,那么移动小基站的部署将获得更大的收益。具体来说,我们展示了服务时间最大化的一个有趣权衡。然后,我们证明了我们的目标问题是np困难的,并提出了一种有效的移动小蜂窝部署算法来处理权衡,以最大化总服务时间。我们构建了一系列具有真实参数设置的模拟来评估我们提出的算法的性能。仿真结果表明,与静态小小区部署算法和随机移动小小区部署算法相比,所提方案能够显著提高为所有用户提供的总服务时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile small cell deployment for next generation cellular networks
With the rapid growth of mobile broadband traffic, adopting small cell is a promising trend for operators to improve network capacity with low cost. However, static small cells cannot be flexibly placed to fulfill time/space-varying traffic. The static small cells might stay in idle or under-utilized mode during some time periods, which wastes resources. Therefore, this paper utilizes the mobile small cell concept and studies the deployment problem for mobile small cells. The objective is to maximize the service time provided by mobile small cells for all users. If a finite number of mobile small cells can serve more users for more time, the mobile small cell deployment will have more gains. Specifically, we show an interesting trade-off in the service time maximization. Then, we prove our target problem is NP-hard and propose an efficient mobile small cell deployment algorithm to deal with the trade-off to maximize the total service time. We construct a series of simulations with realistic parameter settings to evaluate the performance of our proposed algorithm. Compared with a static small cell deployment algorithm and a random mobile small cell deployment algorithm, the simulation results show that our proposed scheme can significantly increase the total service time provided for all users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信