长度不超过5的无扭转幂零群的同构问题

IF 0.1 Q4 MATHEMATICS
B. Eick, Ann-Kristin Engel
{"title":"长度不超过5的无扭转幂零群的同构问题","authors":"B. Eick, Ann-Kristin Engel","doi":"10.1515/gcc-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"9 1","pages":"55 - 75"},"PeriodicalIF":0.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The isomorphism problem for torsion free nilpotent groups of Hirsch length at most 5\",\"authors\":\"B. Eick, Ann-Kristin Engel\",\"doi\":\"10.1515/gcc-2017-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"9 1\",\"pages\":\"55 - 75\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了长度不超过5的有限生成无扭转幂零群的同构问题。我们将展示如何将这个问题转化为求解一组显式给定的多项式方程。在此基础上,我们引入了每一个有限生成的最长为5的无扭转幂零群的同构类型的标准形式,并利用我们的方法的一种变体,给出了它的自同构的显式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The isomorphism problem for torsion free nilpotent groups of Hirsch length at most 5
Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信