{"title":"长度不超过5的无扭转幂零群的同构问题","authors":"B. Eick, Ann-Kristin Engel","doi":"10.1515/gcc-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"9 1","pages":"55 - 75"},"PeriodicalIF":0.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The isomorphism problem for torsion free nilpotent groups of Hirsch length at most 5\",\"authors\":\"B. Eick, Ann-Kristin Engel\",\"doi\":\"10.1515/gcc-2017-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"9 1\",\"pages\":\"55 - 75\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The isomorphism problem for torsion free nilpotent groups of Hirsch length at most 5
Abstract We consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.