{"title":"关于超级驼峰的周期和性质","authors":"J. Smak","doi":"10.32023/0001-5237/70.4.6","DOIUrl":null,"url":null,"abstract":"It is commonly accepted that the periods of superhumps can be satisfactorily explained within a model involving apsidal motion of the accretion disk provided the frequency of the apsidal motion in addition to the dynamical term includes also the pressure effects. Using a larger sample of systems with reliable mass ratios it is shown, however, that this view is not true and the model requires further modifications.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Periods and Nature of Superhumps\",\"authors\":\"J. Smak\",\"doi\":\"10.32023/0001-5237/70.4.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is commonly accepted that the periods of superhumps can be satisfactorily explained within a model involving apsidal motion of the accretion disk provided the frequency of the apsidal motion in addition to the dynamical term includes also the pressure effects. Using a larger sample of systems with reliable mass ratios it is shown, however, that this view is not true and the model requires further modifications.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32023/0001-5237/70.4.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32023/0001-5237/70.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is commonly accepted that the periods of superhumps can be satisfactorily explained within a model involving apsidal motion of the accretion disk provided the frequency of the apsidal motion in addition to the dynamical term includes also the pressure effects. Using a larger sample of systems with reliable mass ratios it is shown, however, that this view is not true and the model requires further modifications.