{"title":"单层和多层石墨烯的鉴定:拉曼研究","authors":"M. Boutahir, A. Rahmani, H. Chadli, A. Rahmani","doi":"10.23647/ca.md20180503","DOIUrl":null,"url":null,"abstract":"In this theoretical work, the Raman spectra were analyzed by considering the origin of the G peak, its shape, position and relative intensity as a function of the number of graphene layers. By using the spectral moment’s method, the Raman spectra of mono, bi and few-layers of graphene are calculated and a good agreement was found with group theory concerning the number of the Raman-active modes and the Raman measurements. Our results provide a Raman analysis to evaluate the number of layers in multilayer graphene. #Raman_spectroscopy #graphene #graphite","PeriodicalId":19388,"journal":{"name":"OAJ Materials and Devices","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of mono-and few-layer graphene: Raman study\",\"authors\":\"M. Boutahir, A. Rahmani, H. Chadli, A. Rahmani\",\"doi\":\"10.23647/ca.md20180503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this theoretical work, the Raman spectra were analyzed by considering the origin of the G peak, its shape, position and relative intensity as a function of the number of graphene layers. By using the spectral moment’s method, the Raman spectra of mono, bi and few-layers of graphene are calculated and a good agreement was found with group theory concerning the number of the Raman-active modes and the Raman measurements. Our results provide a Raman analysis to evaluate the number of layers in multilayer graphene. #Raman_spectroscopy #graphene #graphite\",\"PeriodicalId\":19388,\"journal\":{\"name\":\"OAJ Materials and Devices\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OAJ Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23647/ca.md20180503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OAJ Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23647/ca.md20180503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of mono-and few-layer graphene: Raman study
In this theoretical work, the Raman spectra were analyzed by considering the origin of the G peak, its shape, position and relative intensity as a function of the number of graphene layers. By using the spectral moment’s method, the Raman spectra of mono, bi and few-layers of graphene are calculated and a good agreement was found with group theory concerning the number of the Raman-active modes and the Raman measurements. Our results provide a Raman analysis to evaluate the number of layers in multilayer graphene. #Raman_spectroscopy #graphene #graphite