时间尺度上Volterra方程解的存在唯一性

IF 0.8 4区 数学 Q2 MATHEMATICS
Bartłomiej Kluczyński
{"title":"时间尺度上Volterra方程解的存在唯一性","authors":"Bartłomiej Kluczyński","doi":"10.2478/auom-2019-0040","DOIUrl":null,"url":null,"abstract":"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ,                           x(0)=0, \\matrix{\\matrix{ V(x)( \\cdot ): = {x^\\Delta }( \\cdot ) + \\int_0^ \\cdot {v\\left( { \\cdot ,\\tau ,x,\\left( \\tau \\right)} \\right)} \\Delta \\tau , \\hfill \\cr \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,x(0) = 0, \\hfill \\cr}\\cr {} \\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,𝕉N) {x_y} \\in W_{\\Delta ,0}^{1,p}\\left( {{{[0,1]}_\\mathbb{T}},{\\mathbb{R}^N}} \\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t)   for Δ-a.e.   t∈[0.1]𝕋,x(0)=0, \\left\\{ {\\matrix{{{x^\\Delta }(t) + \\int_0^t {v\\left( {t,\\tau ,x\\left( \\tau \\right)} \\right)} \\Delta \\tau = y(t)\\,\\,\\,for\\,\\Delta - a.e.\\,\\,\\,t \\in {{[0.1]}_\\mathbb{T}},} \\cr {x(0) = 0,} \\cr } } \\right. which is considered on a suitable Sobolev space.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"171 1","pages":"177 - 194"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and uniqueness of solution to Volterra equation on a time scale\",\"authors\":\"Bartłomiej Kluczyński\",\"doi\":\"10.2478/auom-2019-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ,                           x(0)=0, \\\\matrix{\\\\matrix{ V(x)( \\\\cdot ): = {x^\\\\Delta }( \\\\cdot ) + \\\\int_0^ \\\\cdot {v\\\\left( { \\\\cdot ,\\\\tau ,x,\\\\left( \\\\tau \\\\right)} \\\\right)} \\\\Delta \\\\tau , \\\\hfill \\\\cr \\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,x(0) = 0, \\\\hfill \\\\cr}\\\\cr {} \\\\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,𝕉N) {x_y} \\\\in W_{\\\\Delta ,0}^{1,p}\\\\left( {{{[0,1]}_\\\\mathbb{T}},{\\\\mathbb{R}^N}} \\\\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t)   for Δ-a.e.   t∈[0.1]𝕋,x(0)=0, \\\\left\\\\{ {\\\\matrix{{{x^\\\\Delta }(t) + \\\\int_0^t {v\\\\left( {t,\\\\tau ,x\\\\left( \\\\tau \\\\right)} \\\\right)} \\\\Delta \\\\tau = y(t)\\\\,\\\\,\\\\,for\\\\,\\\\Delta - a.e.\\\\,\\\\,\\\\,t \\\\in {{[0.1]}_\\\\mathbb{T}},} \\\\cr {x(0) = 0,} \\\\cr } } \\\\right. which is considered on a suitable Sobolev space.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"171 1\",\"pages\":\"177 - 194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要使用全局反演定理我们调查以下操作符的属性V (x)(⋅):= xΔ(⋅)+∫0⋅V(⋅τ,x,(τ))Δτ ,                            x(0) = 0,{\ \矩阵矩阵{V (x) (\ cdot): = {x ^ \δ}(\ cdot) + \ int_0 ^ \ cdot {V \离开({\ cdot \τ,x,左(\τ\右)}\ \右)}\三角洲\τ,\ hfill \ cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, x (0) = 0, \ hfill \ cr} \ cr {} \ cr}在一个时间范围设置。一些假设下的非线性项v然后我们表明,存在一个解决方案xy∈WΔ,01,p([0, 1]𝕋𝕉N)在W_ {x_y} \{\三角洲,0}^ {1,p} \离开({{{[0,1]}_ \ mathbb {T}}, {\ mathbb {R} ^ N}} \右)相关的积分方程{xΔ(T) +∫0电视(T,τ,x(τ))Δτ= y (T)为Δ-a.e. T∈(0.1)𝕋x (0) = 0,左\ \{{\矩阵{{{x ^ \δ}(t) + \ int_0 ^ t v \{左({t \τx \离开(\τ\右)}\右)}\δ\τ= y (t) \ \ \,为\ \δ-乙醯。\ \ \,t \ {{[0.1]} _ \ mathbb {t}},} \ cr {x (0) = 0} \ cr}} \。这被认为是一个合适的Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence and uniqueness of solution to Volterra equation on a time scale
Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ,                           x(0)=0, \matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,𝕉N) {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t)   for Δ-a.e.   t∈[0.1]𝕋,x(0)=0, \left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right. which is considered on a suitable Sobolev space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信