{"title":"时间尺度上Volterra方程解的存在唯一性","authors":"Bartłomiej Kluczyński","doi":"10.2478/auom-2019-0040","DOIUrl":null,"url":null,"abstract":"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ, x(0)=0, \\matrix{\\matrix{ V(x)( \\cdot ): = {x^\\Delta }( \\cdot ) + \\int_0^ \\cdot {v\\left( { \\cdot ,\\tau ,x,\\left( \\tau \\right)} \\right)} \\Delta \\tau , \\hfill \\cr \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,x(0) = 0, \\hfill \\cr}\\cr {} \\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,N) {x_y} \\in W_{\\Delta ,0}^{1,p}\\left( {{{[0,1]}_\\mathbb{T}},{\\mathbb{R}^N}} \\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t) for Δ-a.e. t∈[0.1]𝕋,x(0)=0, \\left\\{ {\\matrix{{{x^\\Delta }(t) + \\int_0^t {v\\left( {t,\\tau ,x\\left( \\tau \\right)} \\right)} \\Delta \\tau = y(t)\\,\\,\\,for\\,\\Delta - a.e.\\,\\,\\,t \\in {{[0.1]}_\\mathbb{T}},} \\cr {x(0) = 0,} \\cr } } \\right. which is considered on a suitable Sobolev space.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"171 1","pages":"177 - 194"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and uniqueness of solution to Volterra equation on a time scale\",\"authors\":\"Bartłomiej Kluczyński\",\"doi\":\"10.2478/auom-2019-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ, x(0)=0, \\\\matrix{\\\\matrix{ V(x)( \\\\cdot ): = {x^\\\\Delta }( \\\\cdot ) + \\\\int_0^ \\\\cdot {v\\\\left( { \\\\cdot ,\\\\tau ,x,\\\\left( \\\\tau \\\\right)} \\\\right)} \\\\Delta \\\\tau , \\\\hfill \\\\cr \\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,x(0) = 0, \\\\hfill \\\\cr}\\\\cr {} \\\\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,N) {x_y} \\\\in W_{\\\\Delta ,0}^{1,p}\\\\left( {{{[0,1]}_\\\\mathbb{T}},{\\\\mathbb{R}^N}} \\\\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t) for Δ-a.e. t∈[0.1]𝕋,x(0)=0, \\\\left\\\\{ {\\\\matrix{{{x^\\\\Delta }(t) + \\\\int_0^t {v\\\\left( {t,\\\\tau ,x\\\\left( \\\\tau \\\\right)} \\\\right)} \\\\Delta \\\\tau = y(t)\\\\,\\\\,\\\\,for\\\\,\\\\Delta - a.e.\\\\,\\\\,\\\\,t \\\\in {{[0.1]}_\\\\mathbb{T}},} \\\\cr {x(0) = 0,} \\\\cr } } \\\\right. which is considered on a suitable Sobolev space.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"171 1\",\"pages\":\"177 - 194\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the existence and uniqueness of solution to Volterra equation on a time scale
Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ, x(0)=0, \matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,N) {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t) for Δ-a.e. t∈[0.1]𝕋,x(0)=0, \left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right. which is considered on a suitable Sobolev space.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.