一种新型整流结构的无循环移相全桥变换器

Jung-Kyu Han, G. Moon
{"title":"一种新型整流结构的无循环移相全桥变换器","authors":"Jung-Kyu Han, G. Moon","doi":"10.23919/IPEC.2018.8507360","DOIUrl":null,"url":null,"abstract":"A conventional phase-shifted full bridge (PSFB) converter has several advantages for high power applications since it has full-bridge structure and all switching devices can achieve soft switching. However, it has large circulating current in primary side when it operates with small duty-ratio resulting in large conduction loss at primary switches. Also, since rectifier diodes have a voltage ringing between parasitic components, it has large voltage stress. To overcome above problems, a new PSFB converter which eliminates the circulating current and voltage ringing using coupled output inductor is proposed in this paper. As a result, the proposed converter reduces a conduction loss at primary side and can use small voltage rating diode in secondary rectifier. To verify the effect and feasibility, prototype converters are experimented with a 320-400V input voltage and 56V/12.8A output specification.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"14 1","pages":"4054-4058"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Circulating Current-less Phase-Shifted Full-Bridge Converter With New Rectifier Structure\",\"authors\":\"Jung-Kyu Han, G. Moon\",\"doi\":\"10.23919/IPEC.2018.8507360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A conventional phase-shifted full bridge (PSFB) converter has several advantages for high power applications since it has full-bridge structure and all switching devices can achieve soft switching. However, it has large circulating current in primary side when it operates with small duty-ratio resulting in large conduction loss at primary switches. Also, since rectifier diodes have a voltage ringing between parasitic components, it has large voltage stress. To overcome above problems, a new PSFB converter which eliminates the circulating current and voltage ringing using coupled output inductor is proposed in this paper. As a result, the proposed converter reduces a conduction loss at primary side and can use small voltage rating diode in secondary rectifier. To verify the effect and feasibility, prototype converters are experimented with a 320-400V input voltage and 56V/12.8A output specification.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"14 1\",\"pages\":\"4054-4058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

传统的移相全桥(PSFB)变换器具有全桥结构和所有开关器件均可实现软开关等优点,适合大功率应用。但当占空比小时,其一次侧循环电流大,导致一次开关导通损耗大。此外,由于整流二极管在寄生元件之间有电压环,因此具有较大的电压应力。为了克服上述问题,本文提出了一种利用耦合输出电感消除循环电流和电压环的新型PSFB变换器。结果表明,该变换器降低了一次侧的导通损耗,并且可以在二次整流器中使用小额定电压二极管。为了验证其效果和可行性,在320 ~ 400v的输入电压和56V/12.8A的输出规格下对样机进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circulating Current-less Phase-Shifted Full-Bridge Converter With New Rectifier Structure
A conventional phase-shifted full bridge (PSFB) converter has several advantages for high power applications since it has full-bridge structure and all switching devices can achieve soft switching. However, it has large circulating current in primary side when it operates with small duty-ratio resulting in large conduction loss at primary switches. Also, since rectifier diodes have a voltage ringing between parasitic components, it has large voltage stress. To overcome above problems, a new PSFB converter which eliminates the circulating current and voltage ringing using coupled output inductor is proposed in this paper. As a result, the proposed converter reduces a conduction loss at primary side and can use small voltage rating diode in secondary rectifier. To verify the effect and feasibility, prototype converters are experimented with a 320-400V input voltage and 56V/12.8A output specification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信