Daniel DeDorigo, C. Moranz, Hagen Graf, M. Marx, Boyu Shui, M. Kuhl, Y. Manoli
{"title":"一个完全浸入式的深度脑神经探针,模块化架构和δ -sigma ADC集成在每个电极下,用于144个记录点的并行读出","authors":"Daniel DeDorigo, C. Moranz, Hagen Graf, M. Marx, Boyu Shui, M. Kuhl, Y. Manoli","doi":"10.1109/ISSCC.2018.8310384","DOIUrl":null,"url":null,"abstract":"The evolution of tissue-penetrating probes for high-density deep-brain recording of in vivo neural activity is limited by the level of electronic integration on the probe shaft. As the number of electrodes increases, conventional devices need either a large number of interconnects at the base of the probe or allow only a reduced number of electrodes to be read out simultaneously [1,2]. Active probes are used to improve the signal quality and reduce parasitic effects in situ, but still need to route these signals from the electrodes to a base where the readout electronics is located on a large area [3,4]. In this work, we present a modular and scalable architecture of a needle probe, which, instead of routing or prebuffering noise-sensitive analog signals along the shaft, integrates analog-to-digital conversion under each electrode in an area of 70×70μm2. The design eliminates the need for any additional readout circuitry at the top of the probe and connects with a digital 4-wire interface. The presented reconfigurable 11.5mm probe features a constant width of 70μm and thickness of 50μm from top to bottom for minimal tissue damage with 144 integrated recording sites and can be fully immersed in tissue for deep-brain recording applications.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"170 1","pages":"462-464"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fully immersible deep-brain neural probe with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites\",\"authors\":\"Daniel DeDorigo, C. Moranz, Hagen Graf, M. Marx, Boyu Shui, M. Kuhl, Y. Manoli\",\"doi\":\"10.1109/ISSCC.2018.8310384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of tissue-penetrating probes for high-density deep-brain recording of in vivo neural activity is limited by the level of electronic integration on the probe shaft. As the number of electrodes increases, conventional devices need either a large number of interconnects at the base of the probe or allow only a reduced number of electrodes to be read out simultaneously [1,2]. Active probes are used to improve the signal quality and reduce parasitic effects in situ, but still need to route these signals from the electrodes to a base where the readout electronics is located on a large area [3,4]. In this work, we present a modular and scalable architecture of a needle probe, which, instead of routing or prebuffering noise-sensitive analog signals along the shaft, integrates analog-to-digital conversion under each electrode in an area of 70×70μm2. The design eliminates the need for any additional readout circuitry at the top of the probe and connects with a digital 4-wire interface. The presented reconfigurable 11.5mm probe features a constant width of 70μm and thickness of 50μm from top to bottom for minimal tissue damage with 144 integrated recording sites and can be fully immersed in tissue for deep-brain recording applications.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"170 1\",\"pages\":\"462-464\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fully immersible deep-brain neural probe with modular architecture and a delta-sigma ADC integrated under each electrode for parallel readout of 144 recording sites
The evolution of tissue-penetrating probes for high-density deep-brain recording of in vivo neural activity is limited by the level of electronic integration on the probe shaft. As the number of electrodes increases, conventional devices need either a large number of interconnects at the base of the probe or allow only a reduced number of electrodes to be read out simultaneously [1,2]. Active probes are used to improve the signal quality and reduce parasitic effects in situ, but still need to route these signals from the electrodes to a base where the readout electronics is located on a large area [3,4]. In this work, we present a modular and scalable architecture of a needle probe, which, instead of routing or prebuffering noise-sensitive analog signals along the shaft, integrates analog-to-digital conversion under each electrode in an area of 70×70μm2. The design eliminates the need for any additional readout circuitry at the top of the probe and connects with a digital 4-wire interface. The presented reconfigurable 11.5mm probe features a constant width of 70μm and thickness of 50μm from top to bottom for minimal tissue damage with 144 integrated recording sites and can be fully immersed in tissue for deep-brain recording applications.