AWGN中Pearson IV型随机向量的MAP估计

P. Kittisuwan
{"title":"AWGN中Pearson IV型随机向量的MAP估计","authors":"P. Kittisuwan","doi":"10.1109/ECTICON.2012.6254122","DOIUrl":null,"url":null,"abstract":"This paper is concerned with wavelet-based image denoising using Bayesian technique. In conventional denoising process, The parameters of probability density function (PDF) are usually calculated from the first few moments, mean and variance. In this work, a new image denoising algorithm based on Pearson Type IV random vectors is proposed. Pearson Type IV is used because it allows higher-order moments (skewness and kurtosis) to be incorporated into the noiseless wavelet coefficients' probabilistic model. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"5 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MAP estimation of Pearson Type IV random vectors in AWGN\",\"authors\":\"P. Kittisuwan\",\"doi\":\"10.1109/ECTICON.2012.6254122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with wavelet-based image denoising using Bayesian technique. In conventional denoising process, The parameters of probability density function (PDF) are usually calculated from the first few moments, mean and variance. In this work, a new image denoising algorithm based on Pearson Type IV random vectors is proposed. Pearson Type IV is used because it allows higher-order moments (skewness and kurtosis) to be incorporated into the noiseless wavelet coefficients' probabilistic model. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"5 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于贝叶斯技术的小波图像去噪。在传统的去噪过程中,概率密度函数(PDF)的参数通常由前几阶矩、均值和方差计算。本文提出了一种基于Pearson IV型随机向量的图像去噪算法。使用皮尔逊IV型是因为它允许将高阶矩(偏度和峰度)合并到无噪声小波系数的概率模型中。贝叶斯图像去噪方法的关键之一是估计收缩函数的统计参数。我们采用最大后验(MAP)估计来计算局部方差,对局部观测方差采用Gamma密度先验,对噪声小波系数采用高斯分布。实验结果表明,该方法具有较好的去噪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAP estimation of Pearson Type IV random vectors in AWGN
This paper is concerned with wavelet-based image denoising using Bayesian technique. In conventional denoising process, The parameters of probability density function (PDF) are usually calculated from the first few moments, mean and variance. In this work, a new image denoising algorithm based on Pearson Type IV random vectors is proposed. Pearson Type IV is used because it allows higher-order moments (skewness and kurtosis) to be incorporated into the noiseless wavelet coefficients' probabilistic model. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信