球坐标系下泊松方程的数值解法

Q4 Social Sciences
Adilson Costa da Silva, J. A. Helayël Neto, Vladimir Santos da Costa
{"title":"球坐标系下泊松方程的数值解法","authors":"Adilson Costa da Silva, J. A. Helayël Neto, Vladimir Santos da Costa","doi":"10.1590/1806-9126-RBEF-2021-0019","DOIUrl":null,"url":null,"abstract":"This paper sets out to present a numerical procedure that solves Poisson’s equation in a spherical coordinate system. To discretize this equation, integration techniques at the interfaces between different regions have been carried out allowing the calculation of both the potential and the corresponding field inside and outside a charge distribution. The Gauss-Seidel method is adopted to determine the potential in each region and the results, whenever compared with the analytical solutions found in the literature, come out very satisfactory, with errors less than 1% for distances of the order of 1 × 10−14 m and, for larger distances, they never reach 4%.","PeriodicalId":49620,"journal":{"name":"Revista Brasileira De Ensino De Fisica","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical procedure to solve Poisson’s equation in spherical coordinates\",\"authors\":\"Adilson Costa da Silva, J. A. Helayël Neto, Vladimir Santos da Costa\",\"doi\":\"10.1590/1806-9126-RBEF-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper sets out to present a numerical procedure that solves Poisson’s equation in a spherical coordinate system. To discretize this equation, integration techniques at the interfaces between different regions have been carried out allowing the calculation of both the potential and the corresponding field inside and outside a charge distribution. The Gauss-Seidel method is adopted to determine the potential in each region and the results, whenever compared with the analytical solutions found in the literature, come out very satisfactory, with errors less than 1% for distances of the order of 1 × 10−14 m and, for larger distances, they never reach 4%.\",\"PeriodicalId\":49620,\"journal\":{\"name\":\"Revista Brasileira De Ensino De Fisica\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Ensino De Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1806-9126-RBEF-2021-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Ensino De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9126-RBEF-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在球坐标系下求解泊松方程的数值方法。为了离散该方程,在不同区域之间的界面处进行了积分技术,允许计算电荷分布内外的势和相应的场。采用高斯-塞德尔法测定各区域的势,结果与文献中发现的解析解相比,非常令人满意,在1 × 10−14 m量级的距离上误差小于1%,在更大的距离上误差从未达到4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical procedure to solve Poisson’s equation in spherical coordinates
This paper sets out to present a numerical procedure that solves Poisson’s equation in a spherical coordinate system. To discretize this equation, integration techniques at the interfaces between different regions have been carried out allowing the calculation of both the potential and the corresponding field inside and outside a charge distribution. The Gauss-Seidel method is adopted to determine the potential in each region and the results, whenever compared with the analytical solutions found in the literature, come out very satisfactory, with errors less than 1% for distances of the order of 1 × 10−14 m and, for larger distances, they never reach 4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
102
审稿时长
6-12 weeks
期刊介绍: The Revista Brasileira de Ensino de Física - RBEF - is an open-access journal of the Brazilian Physical Society (SBF) devoted to the improvement of Physics teaching at all academic levels. Through the publication of peer-reviewed, high-quality papers, we aim at promoting Physics and correlated sciences, thus contributing to the scientific education of society. The RBEF accepts papers on theoretical and experimental aspects of Physics, materials and methodology, history and philosophy of sciences, education policies and themes relevant to the physics-teaching and research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信