评估垂直分区表上的skyline查询

J. Subero, Marlene Goncalves
{"title":"评估垂直分区表上的skyline查询","authors":"J. Subero, Marlene Goncalves","doi":"10.1145/2513591.2513647","DOIUrl":null,"url":null,"abstract":"In recent years, many researchers have been interested in the problem of Skyline query evaluation because this kind of queries allows to filter high volumes of data. Skyline queries return those objects that are the best ones according to multiple user's criteria. In this work, we propose two algorithms to evaluate Skyline queries over Vertically Partitioned Tables (VPTs). Additionally, we have performed an experimental study that shows our proposed algorithms outperform the existing state-of-art algorithms.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"6 1","pages":"180-185"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating skyline queries over vertically partitioned tables\",\"authors\":\"J. Subero, Marlene Goncalves\",\"doi\":\"10.1145/2513591.2513647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many researchers have been interested in the problem of Skyline query evaluation because this kind of queries allows to filter high volumes of data. Skyline queries return those objects that are the best ones according to multiple user's criteria. In this work, we propose two algorithms to evaluate Skyline queries over Vertically Partitioned Tables (VPTs). Additionally, we have performed an experimental study that shows our proposed algorithms outperform the existing state-of-art algorithms.\",\"PeriodicalId\":93615,\"journal\":{\"name\":\"Proceedings. International Database Engineering and Applications Symposium\",\"volume\":\"6 1\",\"pages\":\"180-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Database Engineering and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513591.2513647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513591.2513647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,许多研究人员对Skyline查询评估问题很感兴趣,因为这种查询允许过滤大量数据。Skyline查询将根据多个用户的标准返回那些最好的对象。在这项工作中,我们提出了两种算法来评估垂直分区表(vpt)上的Skyline查询。此外,我们进行了一项实验研究,表明我们提出的算法优于现有的最先进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating skyline queries over vertically partitioned tables
In recent years, many researchers have been interested in the problem of Skyline query evaluation because this kind of queries allows to filter high volumes of data. Skyline queries return those objects that are the best ones according to multiple user's criteria. In this work, we propose two algorithms to evaluate Skyline queries over Vertically Partitioned Tables (VPTs). Additionally, we have performed an experimental study that shows our proposed algorithms outperform the existing state-of-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信