{"title":"一种新的无约束优化混合共轭梯度算法","authors":"I. Hafaidia, H. Guebbai, M. Al-Baali, M. Ghiat","doi":"10.35634/vm230211","DOIUrl":null,"url":null,"abstract":"It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new hybrid conjugate gradient algorithm for unconstrained optimization\",\"authors\":\"I. Hafaidia, H. Guebbai, M. Al-Baali, M. Ghiat\",\"doi\":\"10.35634/vm230211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A new hybrid conjugate gradient algorithm for unconstrained optimization
It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.