城市生活垃圾焚烧灰增强印度黑棉土工程性能研究进展

K. S. Randhawa, R. Chauhan
{"title":"城市生活垃圾焚烧灰增强印度黑棉土工程性能研究进展","authors":"K. S. Randhawa, R. Chauhan","doi":"10.51201/JUSST12668","DOIUrl":null,"url":null,"abstract":"The present study is the review of work carried out by various researchers on the improvement of engineering properties of expansive soils namely Indian Black Cotton Soil (BCS), after the addition of MSWI ash to the soil in varying proportions. The findings of study indicate that the optimum content of MSWI ash to be added to expansive soils for improvement in strength characteristics varies between 10% and 30% with best results at 25% of MSWI ash proportion. This content of MSWI ash increases the UCS of expansive black cotton soil from 28.8 kPa to 53.4 kPa and an increase in CBR value from 3.38% to 9.38%. The review suggests the use of MSWI ash in India keeping in view the enormous increase in volumes of municipal solid waste (MSW) due to fast urbanization in the country. The extensive use of such green technology will go a long way in reducing requirement of civil construction materials thereby lowering greenhouse emissions. Simultaneously, cost effectiveness in improvement of weak soils to be used in Highway subgrade civil engineering applications using MSWI ash will result is sustainable construction practices.","PeriodicalId":17520,"journal":{"name":"Journal of the University of Shanghai for Science and Technology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Engineering Properties of Indian Black Cotton Soil with Municipal Solid Waste Incineration Ash – A Review\",\"authors\":\"K. S. Randhawa, R. Chauhan\",\"doi\":\"10.51201/JUSST12668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is the review of work carried out by various researchers on the improvement of engineering properties of expansive soils namely Indian Black Cotton Soil (BCS), after the addition of MSWI ash to the soil in varying proportions. The findings of study indicate that the optimum content of MSWI ash to be added to expansive soils for improvement in strength characteristics varies between 10% and 30% with best results at 25% of MSWI ash proportion. This content of MSWI ash increases the UCS of expansive black cotton soil from 28.8 kPa to 53.4 kPa and an increase in CBR value from 3.38% to 9.38%. The review suggests the use of MSWI ash in India keeping in view the enormous increase in volumes of municipal solid waste (MSW) due to fast urbanization in the country. The extensive use of such green technology will go a long way in reducing requirement of civil construction materials thereby lowering greenhouse emissions. Simultaneously, cost effectiveness in improvement of weak soils to be used in Highway subgrade civil engineering applications using MSWI ash will result is sustainable construction practices.\",\"PeriodicalId\":17520,\"journal\":{\"name\":\"Journal of the University of Shanghai for Science and Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the University of Shanghai for Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51201/JUSST12668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the University of Shanghai for Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51201/JUSST12668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究综述了不同研究人员在向膨胀土即印度黑棉土(BCS)中添加不同比例的MSWI灰后,对其工程特性的改善所做的工作。研究结果表明,改善膨胀土强度特性的最佳掺量为10% ~ 30%,25%的掺量为最佳掺量。MSWI灰分的加入使膨胀黑棉土的单轴抗压强度由28.8 kPa提高到53.4 kPa, CBR值由3.38%提高到9.38%。该审查建议,考虑到印度快速城市化导致城市固体废物(MSW)数量的巨大增长,印度使用城市生活垃圾灰。这种绿色技术的广泛应用将大大减少对民用建筑材料的需求,从而减少温室气体排放。同时,在改善公路路基土木工程应用中使用的软弱土壤方面,使用msi灰的成本效益将产生可持续的建筑实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Engineering Properties of Indian Black Cotton Soil with Municipal Solid Waste Incineration Ash – A Review
The present study is the review of work carried out by various researchers on the improvement of engineering properties of expansive soils namely Indian Black Cotton Soil (BCS), after the addition of MSWI ash to the soil in varying proportions. The findings of study indicate that the optimum content of MSWI ash to be added to expansive soils for improvement in strength characteristics varies between 10% and 30% with best results at 25% of MSWI ash proportion. This content of MSWI ash increases the UCS of expansive black cotton soil from 28.8 kPa to 53.4 kPa and an increase in CBR value from 3.38% to 9.38%. The review suggests the use of MSWI ash in India keeping in view the enormous increase in volumes of municipal solid waste (MSW) due to fast urbanization in the country. The extensive use of such green technology will go a long way in reducing requirement of civil construction materials thereby lowering greenhouse emissions. Simultaneously, cost effectiveness in improvement of weak soils to be used in Highway subgrade civil engineering applications using MSWI ash will result is sustainable construction practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信