{"title":"水泥混凝土的结构、抗渗性和耐久性","authors":"E. I. Batyanovskiy, N. S. Gurinenko, A. M. Korsun","doi":"10.21122/2227-1031-2022-21-1-19-27","DOIUrl":null,"url":null,"abstract":"The paper presents the main hypotheses of frost destruction of cement concrete. The influence of cyclic temperature changes and the effect of static and dynamic (shock) loads on concrete on changes in the structure and strength of concreteis considered. The paper provides results of comparative tests of frost resistance of concrete containing a porous additive and a plasticizer, which contribute to an increase in the density and impermeability of its structure. It has been shown experimentally that the introduction of air-entraining additives with an additional effect of hydrophobization is productive from the standpoint of ensuring frost resistance of concrete of relatively low classes (up to C30/37), compressive strength up to 50 MPa and water absorption by mass more than 4.0 %. It is advisable to increase the frost resistance of concrete with greater impermeability and strength by increasing these indicators, in particular, due to the maximum decrease in the initial water content and high-quality compaction. This conclusion is experimentally confirmed by the data presented in the paper, since the “mechanism” of frost destruction of cement concrete is multifactorial, and the growth of its density (impermeability) and strength provide a higher ability to resist “force” effects associated with repeated alternating deformations of concrete, as well as the action of external loads, accumulation of fatigue phenomena, hydrodynamics of liquid filtration under the influence of changing temperature fields, etc. A comparative assessment of concrete frost resistance has been carried out using standardized and patented techniques containing a porous (air-entraining) additive, as well as plasticizing and mineral additives of amorphous micro-silica, introduced into concrete in order to increase its density, impermeability and strength and on this basis – increasing frost resistance. Experimental data are presented, reflecting the relationship and patterns of decrease in frost resistance of concrete subjected to the simultaneous action of static (for compression – different levels from the corresponding indicator of concrete strength) and shock, concentratedly applied dynamic loads. The regularity of the relationship between the accelerated frost destruction of concrete and the action of mechanical loads that cause cracking in its structure has been confirmed.","PeriodicalId":42375,"journal":{"name":"Science & Technique","volume":"32 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, Impermeability and Durability of Cement Concrete\",\"authors\":\"E. I. Batyanovskiy, N. S. Gurinenko, A. M. Korsun\",\"doi\":\"10.21122/2227-1031-2022-21-1-19-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the main hypotheses of frost destruction of cement concrete. The influence of cyclic temperature changes and the effect of static and dynamic (shock) loads on concrete on changes in the structure and strength of concreteis considered. The paper provides results of comparative tests of frost resistance of concrete containing a porous additive and a plasticizer, which contribute to an increase in the density and impermeability of its structure. It has been shown experimentally that the introduction of air-entraining additives with an additional effect of hydrophobization is productive from the standpoint of ensuring frost resistance of concrete of relatively low classes (up to C30/37), compressive strength up to 50 MPa and water absorption by mass more than 4.0 %. It is advisable to increase the frost resistance of concrete with greater impermeability and strength by increasing these indicators, in particular, due to the maximum decrease in the initial water content and high-quality compaction. This conclusion is experimentally confirmed by the data presented in the paper, since the “mechanism” of frost destruction of cement concrete is multifactorial, and the growth of its density (impermeability) and strength provide a higher ability to resist “force” effects associated with repeated alternating deformations of concrete, as well as the action of external loads, accumulation of fatigue phenomena, hydrodynamics of liquid filtration under the influence of changing temperature fields, etc. A comparative assessment of concrete frost resistance has been carried out using standardized and patented techniques containing a porous (air-entraining) additive, as well as plasticizing and mineral additives of amorphous micro-silica, introduced into concrete in order to increase its density, impermeability and strength and on this basis – increasing frost resistance. Experimental data are presented, reflecting the relationship and patterns of decrease in frost resistance of concrete subjected to the simultaneous action of static (for compression – different levels from the corresponding indicator of concrete strength) and shock, concentratedly applied dynamic loads. The regularity of the relationship between the accelerated frost destruction of concrete and the action of mechanical loads that cause cracking in its structure has been confirmed.\",\"PeriodicalId\":42375,\"journal\":{\"name\":\"Science & Technique\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2227-1031-2022-21-1-19-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2022-21-1-19-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure, Impermeability and Durability of Cement Concrete
The paper presents the main hypotheses of frost destruction of cement concrete. The influence of cyclic temperature changes and the effect of static and dynamic (shock) loads on concrete on changes in the structure and strength of concreteis considered. The paper provides results of comparative tests of frost resistance of concrete containing a porous additive and a plasticizer, which contribute to an increase in the density and impermeability of its structure. It has been shown experimentally that the introduction of air-entraining additives with an additional effect of hydrophobization is productive from the standpoint of ensuring frost resistance of concrete of relatively low classes (up to C30/37), compressive strength up to 50 MPa and water absorption by mass more than 4.0 %. It is advisable to increase the frost resistance of concrete with greater impermeability and strength by increasing these indicators, in particular, due to the maximum decrease in the initial water content and high-quality compaction. This conclusion is experimentally confirmed by the data presented in the paper, since the “mechanism” of frost destruction of cement concrete is multifactorial, and the growth of its density (impermeability) and strength provide a higher ability to resist “force” effects associated with repeated alternating deformations of concrete, as well as the action of external loads, accumulation of fatigue phenomena, hydrodynamics of liquid filtration under the influence of changing temperature fields, etc. A comparative assessment of concrete frost resistance has been carried out using standardized and patented techniques containing a porous (air-entraining) additive, as well as plasticizing and mineral additives of amorphous micro-silica, introduced into concrete in order to increase its density, impermeability and strength and on this basis – increasing frost resistance. Experimental data are presented, reflecting the relationship and patterns of decrease in frost resistance of concrete subjected to the simultaneous action of static (for compression – different levels from the corresponding indicator of concrete strength) and shock, concentratedly applied dynamic loads. The regularity of the relationship between the accelerated frost destruction of concrete and the action of mechanical loads that cause cracking in its structure has been confirmed.