生成式RBAC模型中的异常检测与可视化

Maria Leitner, S. Rinderle-Ma
{"title":"生成式RBAC模型中的异常检测与可视化","authors":"Maria Leitner, S. Rinderle-Ma","doi":"10.1145/2613087.2613105","DOIUrl":null,"url":null,"abstract":"With the wide use of Role-based Access Control (RBAC), the need for monitoring, evaluation, and verification of RBAC implementations (e.g., to evaluate ex post which users acting in which roles were authorized to execute permissions) is evident. In this paper, we aim at detecting and identifying anomalies that originate from insiders such as the infringement of rights or irregular activities. To do that, we compare prescriptive (original) RBAC models (i.e. how the RBAC model is expected to work) with generative (current-state) RBAC models (i.e. the actual accesses represented by an RBAC model obtained with mining techniques). For this we present different similarity measures for RBAC models and their entities. We also provide techniques for visualizing anomalies within RBAC models based on difference graphs. This can be used for the alignment of RBAC models such as for policy updates or reconciliation. The effectiveness of the approach is evaluated based on a prototypical implementation and an experiment.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"19 1","pages":"41-52"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Anomaly detection and visualization in generative RBAC models\",\"authors\":\"Maria Leitner, S. Rinderle-Ma\",\"doi\":\"10.1145/2613087.2613105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide use of Role-based Access Control (RBAC), the need for monitoring, evaluation, and verification of RBAC implementations (e.g., to evaluate ex post which users acting in which roles were authorized to execute permissions) is evident. In this paper, we aim at detecting and identifying anomalies that originate from insiders such as the infringement of rights or irregular activities. To do that, we compare prescriptive (original) RBAC models (i.e. how the RBAC model is expected to work) with generative (current-state) RBAC models (i.e. the actual accesses represented by an RBAC model obtained with mining techniques). For this we present different similarity measures for RBAC models and their entities. We also provide techniques for visualizing anomalies within RBAC models based on difference graphs. This can be used for the alignment of RBAC models such as for policy updates or reconciliation. The effectiveness of the approach is evaluated based on a prototypical implementation and an experiment.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"19 1\",\"pages\":\"41-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2613087.2613105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2613087.2613105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着基于角色的访问控制(Role-based Access Control, RBAC)的广泛使用,监视、评估和验证RBAC实现(例如,事后评估哪些用户在哪些角色中被授权执行权限)的需求是显而易见的。在本文中,我们的目标是检测和识别源自内部人员的异常,例如侵权或违规活动。为此,我们比较了规定性(原始)RBAC模型(即RBAC模型的预期工作方式)与生成式(当前状态)RBAC模型(即通过挖掘技术获得的RBAC模型所表示的实际访问)。为此,我们提出了不同的RBAC模型及其实体的相似性度量。我们还提供了基于差分图的RBAC模型中的异常可视化技术。这可以用于RBAC模型的对齐,例如策略更新或调节。通过一个原型实现和一个实验,对该方法的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly detection and visualization in generative RBAC models
With the wide use of Role-based Access Control (RBAC), the need for monitoring, evaluation, and verification of RBAC implementations (e.g., to evaluate ex post which users acting in which roles were authorized to execute permissions) is evident. In this paper, we aim at detecting and identifying anomalies that originate from insiders such as the infringement of rights or irregular activities. To do that, we compare prescriptive (original) RBAC models (i.e. how the RBAC model is expected to work) with generative (current-state) RBAC models (i.e. the actual accesses represented by an RBAC model obtained with mining techniques). For this we present different similarity measures for RBAC models and their entities. We also provide techniques for visualizing anomalies within RBAC models based on difference graphs. This can be used for the alignment of RBAC models such as for policy updates or reconciliation. The effectiveness of the approach is evaluated based on a prototypical implementation and an experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信