{"title":"局部和异步beta缩减(对吉拉德执行公式的分析)","authors":"V. Danos, L. Regnier","doi":"10.1109/LICS.1993.287578","DOIUrl":null,"url":null,"abstract":"The authors build a confluent, local, asynchronous reduction on lambda -terms, using infinite objects (partial injections of Girard's (1988) algebra L*), which is simple (only one move), intelligible (semantic setting of the reduction), and general (based on a large-scale decomposition of beta ), and may be mechanized.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"6 1","pages":"296-306"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Local and asynchronous beta-reduction (an analysis of Girard's execution formula)\",\"authors\":\"V. Danos, L. Regnier\",\"doi\":\"10.1109/LICS.1993.287578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors build a confluent, local, asynchronous reduction on lambda -terms, using infinite objects (partial injections of Girard's (1988) algebra L*), which is simple (only one move), intelligible (semantic setting of the reduction), and general (based on a large-scale decomposition of beta ), and may be mechanized.<<ETX>>\",\"PeriodicalId\":6322,\"journal\":{\"name\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"6 1\",\"pages\":\"296-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1993.287578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local and asynchronous beta-reduction (an analysis of Girard's execution formula)
The authors build a confluent, local, asynchronous reduction on lambda -terms, using infinite objects (partial injections of Girard's (1988) algebra L*), which is simple (only one move), intelligible (semantic setting of the reduction), and general (based on a large-scale decomposition of beta ), and may be mechanized.<>