{"title":"体异质结太阳能电池用ALD生长吸收材料","authors":"Neha Mahuli, S. Sarkar","doi":"10.1109/PVSC.2014.6925673","DOIUrl":null,"url":null,"abstract":"In this report we have discussed the need of conformal deposition of the low bandgap materials as absorber in solid-state bulk heterojunction devices. We demonstrated ALD grown Sb2S3 and TiSx thin films for photovoltaic applications. The deposition mechanism was studied in depth using in-situ quartz crystal microbalance (QCM). Need of modified reactor configuration for the uniform deposition of the material throughout the depth of the mesoporous host was discussed with elaborated comparative results for various absorber material device configurations.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"23 1","pages":"0247-0249"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALD grown absorber materials for bulk heterojunction solar cells\",\"authors\":\"Neha Mahuli, S. Sarkar\",\"doi\":\"10.1109/PVSC.2014.6925673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report we have discussed the need of conformal deposition of the low bandgap materials as absorber in solid-state bulk heterojunction devices. We demonstrated ALD grown Sb2S3 and TiSx thin films for photovoltaic applications. The deposition mechanism was studied in depth using in-situ quartz crystal microbalance (QCM). Need of modified reactor configuration for the uniform deposition of the material throughout the depth of the mesoporous host was discussed with elaborated comparative results for various absorber material device configurations.\",\"PeriodicalId\":6649,\"journal\":{\"name\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"23 1\",\"pages\":\"0247-0249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2014.6925673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ALD grown absorber materials for bulk heterojunction solar cells
In this report we have discussed the need of conformal deposition of the low bandgap materials as absorber in solid-state bulk heterojunction devices. We demonstrated ALD grown Sb2S3 and TiSx thin films for photovoltaic applications. The deposition mechanism was studied in depth using in-situ quartz crystal microbalance (QCM). Need of modified reactor configuration for the uniform deposition of the material throughout the depth of the mesoporous host was discussed with elaborated comparative results for various absorber material device configurations.