绘制用于人类基因组学应用的 MAVE 数据图谱。

IF 1.4 4区 化学 Q3 CHEMISTRY, ORGANIC
Jeremy A Arbesfeld, Estelle Y Da, James S Stevenson, Kori Kuzma, Anika Paul, Tierra Farris, Benjamin J Capodanno, Sally B Grindstaff, Kevin Riehle, Nuno Saraiva-Agostinho, Jordan F Safer, Aleksandar Milosavljevic, Julia Foreman, Helen V Firth, Sarah E Hunt, Sumaiya Iqbal, Melissa S Cline, Alan F Rubin, Alex H Wagner
{"title":"绘制用于人类基因组学应用的 MAVE 数据图谱。","authors":"Jeremy A Arbesfeld, Estelle Y Da, James S Stevenson, Kori Kuzma, Anika Paul, Tierra Farris, Benjamin J Capodanno, Sally B Grindstaff, Kevin Riehle, Nuno Saraiva-Agostinho, Jordan F Safer, Aleksandar Milosavljevic, Julia Foreman, Helen V Firth, Sarah E Hunt, Sumaiya Iqbal, Melissa S Cline, Alan F Rubin, Alex H Wagner","doi":"10.1101/2023.06.20.545702","DOIUrl":null,"url":null,"abstract":"<p><p>The large-scale experimental measures of variant functional assays submitted to MaveDB have the potential to provide key information for resolving variants of uncertain significance, but the reporting of results relative to assayed sequence hinders their downstream utility. The Atlas of Variant Effects Alliance mapped multiplexed assays of variant effect data to human reference sequences, creating a robust set of machine-readable homology mappings. This method processed approximately 2.5 million protein and genomic variants in MaveDB, successfully mapping 98.61% of examined variants and disseminating data to resources such as the UCSC Genome Browser and Ensembl Variant Effect Predictor.</p>","PeriodicalId":9770,"journal":{"name":"Chemistry of Heterocyclic Compounds","volume":"7 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping MAVE data for use in human genomics applications.\",\"authors\":\"Jeremy A Arbesfeld, Estelle Y Da, James S Stevenson, Kori Kuzma, Anika Paul, Tierra Farris, Benjamin J Capodanno, Sally B Grindstaff, Kevin Riehle, Nuno Saraiva-Agostinho, Jordan F Safer, Aleksandar Milosavljevic, Julia Foreman, Helen V Firth, Sarah E Hunt, Sumaiya Iqbal, Melissa S Cline, Alan F Rubin, Alex H Wagner\",\"doi\":\"10.1101/2023.06.20.545702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The large-scale experimental measures of variant functional assays submitted to MaveDB have the potential to provide key information for resolving variants of uncertain significance, but the reporting of results relative to assayed sequence hinders their downstream utility. The Atlas of Variant Effects Alliance mapped multiplexed assays of variant effect data to human reference sequences, creating a robust set of machine-readable homology mappings. This method processed approximately 2.5 million protein and genomic variants in MaveDB, successfully mapping 98.61% of examined variants and disseminating data to resources such as the UCSC Genome Browser and Ensembl Variant Effect Predictor.</p>\",\"PeriodicalId\":9770,\"journal\":{\"name\":\"Chemistry of Heterocyclic Compounds\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Heterocyclic Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.06.20.545702\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Heterocyclic Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.20.545702","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

提交给 MaveDB 的变异功能测定的大规模实验措施有可能为解决意义不确定的变异问题提供关键信息,但相对于测定序列的结果报告却阻碍了它们在下游的应用。变异效应图谱联盟(Atlas of Variant Effects Alliance)将多重检测的变异效应数据映射到人类参考序列,创建了一套强大的机器可读同源性映射。这种方法处理了 MaveDB 中约 250 万个蛋白质和基因组变异,成功映射了 98.61% 的检测变异,并将数据传播到 UCSC 基因组浏览器和 Ensembl 变异效应预测器等资源中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping MAVE data for use in human genomics applications.

The large-scale experimental measures of variant functional assays submitted to MaveDB have the potential to provide key information for resolving variants of uncertain significance, but the reporting of results relative to assayed sequence hinders their downstream utility. The Atlas of Variant Effects Alliance mapped multiplexed assays of variant effect data to human reference sequences, creating a robust set of machine-readable homology mappings. This method processed approximately 2.5 million protein and genomic variants in MaveDB, successfully mapping 98.61% of examined variants and disseminating data to resources such as the UCSC Genome Browser and Ensembl Variant Effect Predictor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
13.30%
发文量
98
审稿时长
1 months
期刊介绍: The international journal Chemistry of Heterocyclic Compounds publishes original papers, short communications, reviews, and mini-reviews dealing with problems in the field of heterocyclic chemistry in Russian and English. The Journal also publishes reviews and annotations on new books and brief reports on conferences in the field of heterocyclic chemistry, as well as commemo­ra­tives dedicated to prominent heterocyclic chemists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信