W. Lojkowski, C. Leonelli, T. Chudoba, J. Wojnarowicz, A. Majcher, A. Mazurkiewicz
{"title":"高能低温纳米颗粒合成技术:微波和高压","authors":"W. Lojkowski, C. Leonelli, T. Chudoba, J. Wojnarowicz, A. Majcher, A. Mazurkiewicz","doi":"10.3390/INORGANICS2040606","DOIUrl":null,"url":null,"abstract":"Microwave Solvothermal Synthesis (MSS) is a chemical technology, where apart from possible effects of microwaves on the chemical reaction paths, microwave heating allows the precise planning of a time-temperature schedule, as well as to achieve high super-saturation of the reagents uniformly in the reactor vessel. Thus, MSS is suitable for production of nanoparticles with small grain size distribution and a high degree of crystallinity. A further advantage of the technology is a much lower synthesis temperature than for gas phase, plasma or sol-gel technologies. New reactors have been developed to exploit these advantages of the MSS technology of nanoparticles synthesis and to scale up the production rate. Reactor design and realization has been shown to be decisive and critical for the control of the MSS technology. Examples of oxidic and phosphatic nanoparticles synthesis have been reported.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"31 1","pages":"606-619"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"High-Energy-Low-Temperature Technologies for the Synthesis of Nanoparticles: Microwaves and High Pressure\",\"authors\":\"W. Lojkowski, C. Leonelli, T. Chudoba, J. Wojnarowicz, A. Majcher, A. Mazurkiewicz\",\"doi\":\"10.3390/INORGANICS2040606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave Solvothermal Synthesis (MSS) is a chemical technology, where apart from possible effects of microwaves on the chemical reaction paths, microwave heating allows the precise planning of a time-temperature schedule, as well as to achieve high super-saturation of the reagents uniformly in the reactor vessel. Thus, MSS is suitable for production of nanoparticles with small grain size distribution and a high degree of crystallinity. A further advantage of the technology is a much lower synthesis temperature than for gas phase, plasma or sol-gel technologies. New reactors have been developed to exploit these advantages of the MSS technology of nanoparticles synthesis and to scale up the production rate. Reactor design and realization has been shown to be decisive and critical for the control of the MSS technology. Examples of oxidic and phosphatic nanoparticles synthesis have been reported.\",\"PeriodicalId\":13580,\"journal\":{\"name\":\"Inorganics (Basel)\",\"volume\":\"31 1\",\"pages\":\"606-619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/INORGANICS2040606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/INORGANICS2040606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Energy-Low-Temperature Technologies for the Synthesis of Nanoparticles: Microwaves and High Pressure
Microwave Solvothermal Synthesis (MSS) is a chemical technology, where apart from possible effects of microwaves on the chemical reaction paths, microwave heating allows the precise planning of a time-temperature schedule, as well as to achieve high super-saturation of the reagents uniformly in the reactor vessel. Thus, MSS is suitable for production of nanoparticles with small grain size distribution and a high degree of crystallinity. A further advantage of the technology is a much lower synthesis temperature than for gas phase, plasma or sol-gel technologies. New reactors have been developed to exploit these advantages of the MSS technology of nanoparticles synthesis and to scale up the production rate. Reactor design and realization has been shown to be decisive and critical for the control of the MSS technology. Examples of oxidic and phosphatic nanoparticles synthesis have been reported.