Vivi N. Arief, Ian H. DeLacy, Thomas Payne, Kaye E. Basford
{"title":"利用基因组预测模型可视化长期基因型表现模式","authors":"Vivi N. Arief, Ian H. DeLacy, Thomas Payne, Kaye E. Basford","doi":"10.1111/anzs.12362","DOIUrl":null,"url":null,"abstract":"<p>Historical data from plant breeding programs provide valuable resources to study the response of genotypes to the changing environment (i.e. genotype-by-environment interaction). Such data have been used to evaluate the pattern of genotype performance across regions or locations, but its use to evaluate the long-term pattern of genotype performance across environments (i.e. locations-by-years) has been hampered by the lack of common genotypes across years. This lack of common genotypes is due to the structure of the breeding program, especially for annual crops, where only a proportion of selected genotypes are tested in subsequent years. This has resulted in a sparse prediction of the performance of genotypes across years (i.e. a genotype-by-year table). A genomic prediction method that fitted both a relationship matrix among genotypes and a relationship matrix among environments (i.e. years) could overcome this limitation and produce a dense genotype-by-year table, thereby enabling some evaluation of long-term genotype performance. In this paper, we applied the genomic prediction model to the yield data from CIMMYT's Elite Spring Wheat Yield Trials (ESWYT) to visualise the pattern of genotype performance over 25 years.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 2","pages":"297-312"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12362","citationCount":"1","resultStr":"{\"title\":\"Visualising the pattern of long-term genotype performance by leveraging a genomic prediction model\",\"authors\":\"Vivi N. Arief, Ian H. DeLacy, Thomas Payne, Kaye E. Basford\",\"doi\":\"10.1111/anzs.12362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Historical data from plant breeding programs provide valuable resources to study the response of genotypes to the changing environment (i.e. genotype-by-environment interaction). Such data have been used to evaluate the pattern of genotype performance across regions or locations, but its use to evaluate the long-term pattern of genotype performance across environments (i.e. locations-by-years) has been hampered by the lack of common genotypes across years. This lack of common genotypes is due to the structure of the breeding program, especially for annual crops, where only a proportion of selected genotypes are tested in subsequent years. This has resulted in a sparse prediction of the performance of genotypes across years (i.e. a genotype-by-year table). A genomic prediction method that fitted both a relationship matrix among genotypes and a relationship matrix among environments (i.e. years) could overcome this limitation and produce a dense genotype-by-year table, thereby enabling some evaluation of long-term genotype performance. In this paper, we applied the genomic prediction model to the yield data from CIMMYT's Elite Spring Wheat Yield Trials (ESWYT) to visualise the pattern of genotype performance over 25 years.</p>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"64 2\",\"pages\":\"297-312\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12362\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12362\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12362","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Visualising the pattern of long-term genotype performance by leveraging a genomic prediction model
Historical data from plant breeding programs provide valuable resources to study the response of genotypes to the changing environment (i.e. genotype-by-environment interaction). Such data have been used to evaluate the pattern of genotype performance across regions or locations, but its use to evaluate the long-term pattern of genotype performance across environments (i.e. locations-by-years) has been hampered by the lack of common genotypes across years. This lack of common genotypes is due to the structure of the breeding program, especially for annual crops, where only a proportion of selected genotypes are tested in subsequent years. This has resulted in a sparse prediction of the performance of genotypes across years (i.e. a genotype-by-year table). A genomic prediction method that fitted both a relationship matrix among genotypes and a relationship matrix among environments (i.e. years) could overcome this limitation and produce a dense genotype-by-year table, thereby enabling some evaluation of long-term genotype performance. In this paper, we applied the genomic prediction model to the yield data from CIMMYT's Elite Spring Wheat Yield Trials (ESWYT) to visualise the pattern of genotype performance over 25 years.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.