B. Mahanthesh , B.J. Gireesha , Rama Subba Reddy Gorla
{"title":"基于对流边界条件的水基纳米流体MHD三维流动的非线性辐射传热","authors":"B. Mahanthesh , B.J. Gireesha , Rama Subba Reddy Gorla","doi":"10.1016/j.jnnms.2016.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>A theoretical investigation of the hydromagnetic three-dimensional boundary layer flow of nanofluid due to stretching sheet has been carried out in the presence of a non-linear thermal radiation, Soret and Dufour effects. Three different types of water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. The governing boundary layer equations are transformed into a set of similarity equations using three dimensional non-linear type similarity transformations. The resultant equations are numerically solved by employing Runge–Kutta–Fehlberg fourth–fifth order method along with shooting scheme. Further, under some limiting case obtained results are compared with some previously published results and found in good agreement. The problem is governed eleven physical parameters such as magnetic parameter, radiation parameter, temperature ratio parameter, Prandtl, Schmidt, Soret, Dufour and Biot numbers, stretching ratio parameter, power index and nanoparticles volume fraction parameter. The effect of these parameters on various flow distributions is comprehensively discussed with the help of graphs and tables. It is found that, properties of the fluid can be changed by varying the concentration of nanoparticles and the nanoparticles enhance the thermal conductivity which results improvement in efficiency of heat transfer systems.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"35 1","pages":"Pages 178-198"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2016.02.003","citationCount":"114","resultStr":"{\"title\":\"Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition\",\"authors\":\"B. Mahanthesh , B.J. Gireesha , Rama Subba Reddy Gorla\",\"doi\":\"10.1016/j.jnnms.2016.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A theoretical investigation of the hydromagnetic three-dimensional boundary layer flow of nanofluid due to stretching sheet has been carried out in the presence of a non-linear thermal radiation, Soret and Dufour effects. Three different types of water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. The governing boundary layer equations are transformed into a set of similarity equations using three dimensional non-linear type similarity transformations. The resultant equations are numerically solved by employing Runge–Kutta–Fehlberg fourth–fifth order method along with shooting scheme. Further, under some limiting case obtained results are compared with some previously published results and found in good agreement. The problem is governed eleven physical parameters such as magnetic parameter, radiation parameter, temperature ratio parameter, Prandtl, Schmidt, Soret, Dufour and Biot numbers, stretching ratio parameter, power index and nanoparticles volume fraction parameter. The effect of these parameters on various flow distributions is comprehensively discussed with the help of graphs and tables. It is found that, properties of the fluid can be changed by varying the concentration of nanoparticles and the nanoparticles enhance the thermal conductivity which results improvement in efficiency of heat transfer systems.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"Pages 178-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2016.02.003\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896516300014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896516300014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear radiative heat transfer in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet with convective boundary condition
A theoretical investigation of the hydromagnetic three-dimensional boundary layer flow of nanofluid due to stretching sheet has been carried out in the presence of a non-linear thermal radiation, Soret and Dufour effects. Three different types of water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. The governing boundary layer equations are transformed into a set of similarity equations using three dimensional non-linear type similarity transformations. The resultant equations are numerically solved by employing Runge–Kutta–Fehlberg fourth–fifth order method along with shooting scheme. Further, under some limiting case obtained results are compared with some previously published results and found in good agreement. The problem is governed eleven physical parameters such as magnetic parameter, radiation parameter, temperature ratio parameter, Prandtl, Schmidt, Soret, Dufour and Biot numbers, stretching ratio parameter, power index and nanoparticles volume fraction parameter. The effect of these parameters on various flow distributions is comprehensively discussed with the help of graphs and tables. It is found that, properties of the fluid can be changed by varying the concentration of nanoparticles and the nanoparticles enhance the thermal conductivity which results improvement in efficiency of heat transfer systems.