具有地形的圣维南体系动静力重建方案的收敛性

F. Bouchut, Xavier Lhébrard
{"title":"具有地形的圣维南体系动静力重建方案的收敛性","authors":"F. Bouchut, Xavier Lhébrard","doi":"10.1090/MCOM/3600","DOIUrl":null,"url":null,"abstract":"We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with Lipschitz continuous topography. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"14 1","pages":"1119-1153"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography\",\"authors\":\"F. Bouchut, Xavier Lhébrard\",\"doi\":\"10.1090/MCOM/3600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with Lipschitz continuous topography. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"14 1\",\"pages\":\"1119-1153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于具有Lipschitz连续地形的Saint Venant体系,我们证明了带动力学数值通量的流体静力重建方案的收敛性。我们使用最近导出的具有耗散的完全离散锐熵不等式,使我们能够在近似解的梯度的空间增量∆x的平方根的倒数中建立一个估计。利用Diperna方法,我们得到了有界弱熵解的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography
We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with Lipschitz continuous topography. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信