启发式一次性学习在图像和文本对偶信息处理中的应用

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
L. Weigang, L. Martins, Nikson Ferreira, Christian Miranda, Lucas S. Althoff, Walner Pessoa, Mylène C. Q. Farias, Ricardo Jacobi, Mauricio Rincon
{"title":"启发式一次性学习在图像和文本对偶信息处理中的应用","authors":"L. Weigang, L. Martins, Nikson Ferreira, Christian Miranda, Lucas S. Althoff, Walner Pessoa, Mylène C. Q. Farias, Ricardo Jacobi, Mauricio Rincon","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195","DOIUrl":null,"url":null,"abstract":"Few-shot learning is an important mechanism to minimize the need for the labeling of large amounts of data and taking advantage of transfer learning. To identify image/text input with duality property, this research proposes a “Heuristic once learning (HOL)” mechanism to investigate multi-modal input processing similar to human-like behavior. First, we create an image/text data set of big Latin letters composed of small letters and another data set composed of Arabic, Chinese and Roman numerals. Secondly, we use Convolutional Neural Networks (CNN) for pre-training the dataset of letters to get structural features. Thirdly, using the acquired knowledge, a Self-organizing Map (SOM) and Contrastive Language-Image Pretraining (CLIP) are tested separately using zero-shot learning. Siamese Networks and Vision Transformer (ViT) are also tested using one-shot learning by knowledge transfer to identify the features of unknown characters. The research results show the potential and challenges to realize HOL and make a useful attempt for the development of general agents.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic Once Learning for Image & Text Duality Information Processing\",\"authors\":\"L. Weigang, L. Martins, Nikson Ferreira, Christian Miranda, Lucas S. Althoff, Walner Pessoa, Mylène C. Q. Farias, Ricardo Jacobi, Mauricio Rincon\",\"doi\":\"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning is an important mechanism to minimize the need for the labeling of large amounts of data and taking advantage of transfer learning. To identify image/text input with duality property, this research proposes a “Heuristic once learning (HOL)” mechanism to investigate multi-modal input processing similar to human-like behavior. First, we create an image/text data set of big Latin letters composed of small letters and another data set composed of Arabic, Chinese and Roman numerals. Secondly, we use Convolutional Neural Networks (CNN) for pre-training the dataset of letters to get structural features. Thirdly, using the acquired knowledge, a Self-organizing Map (SOM) and Contrastive Language-Image Pretraining (CLIP) are tested separately using zero-shot learning. Siamese Networks and Vision Transformer (ViT) are also tested using one-shot learning by knowledge transfer to identify the features of unknown characters. The research results show the potential and challenges to realize HOL and make a useful attempt for the development of general agents.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

Few-shot学习是一种重要的机制,可以最大限度地减少对大量数据的标记需求,并利用迁移学习。为了识别具有对偶性的图像/文本输入,本研究提出了一种“启发式一次学习(HOL)”机制来研究类似于人类行为的多模态输入处理。首先,我们创建一个由小写字母组成的大拉丁字母的图像/文本数据集和另一个由阿拉伯语、汉语和罗马数字组成的数据集。其次,我们使用卷积神经网络(CNN)对字母数据集进行预训练,得到结构特征。第三,利用学习到的知识,对自组织映射(SOM)和对比语言图像预训练(CLIP)分别进行零次学习测试。通过知识转移的一次性学习,对Siamese Networks和Vision Transformer (ViT)进行了测试,以识别未知字符的特征。研究结果显示了实现HOL的潜力和挑战,为总代理的发展做出了有益的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic Once Learning for Image & Text Duality Information Processing
Few-shot learning is an important mechanism to minimize the need for the labeling of large amounts of data and taking advantage of transfer learning. To identify image/text input with duality property, this research proposes a “Heuristic once learning (HOL)” mechanism to investigate multi-modal input processing similar to human-like behavior. First, we create an image/text data set of big Latin letters composed of small letters and another data set composed of Arabic, Chinese and Roman numerals. Secondly, we use Convolutional Neural Networks (CNN) for pre-training the dataset of letters to get structural features. Thirdly, using the acquired knowledge, a Self-organizing Map (SOM) and Contrastive Language-Image Pretraining (CLIP) are tested separately using zero-shot learning. Siamese Networks and Vision Transformer (ViT) are also tested using one-shot learning by knowledge transfer to identify the features of unknown characters. The research results show the potential and challenges to realize HOL and make a useful attempt for the development of general agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信