一种有效的数据流最大频繁模式挖掘算法

Junrui Yang, Yanjun Wei, Fenfen Zhou
{"title":"一种有效的数据流最大频繁模式挖掘算法","authors":"Junrui Yang, Yanjun Wei, Fenfen Zhou","doi":"10.1109/IHMSC.2015.226","DOIUrl":null,"url":null,"abstract":"For the environment of data stream, an effective algorithm DSM-Miner for mining maximal frequent patterns is proposed. It uses Transactions Sliding Window to specify the number of transactions in each treatment process, and distinguishes and treats the old and new transactions by the way of decaying, meanwhile it takes advantage of the proposed Sliding Window Maximum frequent pattern Tree SWM-Tree to maintain the information of patterns. In the mining process of maximal frequent patterns, the algorithm uses the corresponding node of MFP-Tree as the root of an enumeration tree and uses this enumeration tree as a search space. In addition, the algorithm also adopts appropriate pruning operations, calculation pattern of bit items group and \"depth-first\" search strategies and ideas. Experimental results show that DSM-Miner algorithm has better space and time performance.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"1 1","pages":"444-447"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams\",\"authors\":\"Junrui Yang, Yanjun Wei, Fenfen Zhou\",\"doi\":\"10.1109/IHMSC.2015.226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the environment of data stream, an effective algorithm DSM-Miner for mining maximal frequent patterns is proposed. It uses Transactions Sliding Window to specify the number of transactions in each treatment process, and distinguishes and treats the old and new transactions by the way of decaying, meanwhile it takes advantage of the proposed Sliding Window Maximum frequent pattern Tree SWM-Tree to maintain the information of patterns. In the mining process of maximal frequent patterns, the algorithm uses the corresponding node of MFP-Tree as the root of an enumeration tree and uses this enumeration tree as a search space. In addition, the algorithm also adopts appropriate pruning operations, calculation pattern of bit items group and \\\"depth-first\\\" search strategies and ideas. Experimental results show that DSM-Miner algorithm has better space and time performance.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"444-447\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对数据流环境,提出了一种挖掘最大频繁模式的有效算法DSM-Miner。该方法利用事务滑动窗口来指定每个处理过程中的事务数量,并通过衰减的方式来区分和处理新旧事务,同时利用滑动窗口最大频繁模式树SWM-Tree来维护模式信息。在最大频繁模式的挖掘过程中,该算法使用MFP-Tree的对应节点作为枚举树的根,并将该枚举树作为搜索空间。此外,该算法还采用了适当的剪枝操作、位项组的计算模式以及“深度优先”的搜索策略和思路。实验结果表明,DSM-Miner算法具有较好的时空性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams
For the environment of data stream, an effective algorithm DSM-Miner for mining maximal frequent patterns is proposed. It uses Transactions Sliding Window to specify the number of transactions in each treatment process, and distinguishes and treats the old and new transactions by the way of decaying, meanwhile it takes advantage of the proposed Sliding Window Maximum frequent pattern Tree SWM-Tree to maintain the information of patterns. In the mining process of maximal frequent patterns, the algorithm uses the corresponding node of MFP-Tree as the root of an enumeration tree and uses this enumeration tree as a search space. In addition, the algorithm also adopts appropriate pruning operations, calculation pattern of bit items group and "depth-first" search strategies and ideas. Experimental results show that DSM-Miner algorithm has better space and time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信