{"title":"具有无限马尔可夫跳变的离散时间随机多智能体系统的H∞一致控制","authors":"Jie Wang, Xin Chen","doi":"10.1109/IECON43393.2020.9255057","DOIUrl":null,"url":null,"abstract":"This paper focuses on multi-agent systems under the disturbances of parameter uncertainties, noises and external disturbances simultaneously, which are more suitable for the changing environments than most ideal models. For this case, the robust H∞ consensus control problem is studied to attenuate the influence of disturbances below a given level. We aim to design a consensus controller such that the closed-loop muti-agent systems reach the desired H∞ performance. By tools of Kronecker product, graph theory, and infinite horizon bounded real lemma, sufficient conditions for existence of H∞ consensus protocol design are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to show the validity of the method.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"165 6 1","pages":"245-250"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps\",\"authors\":\"Jie Wang, Xin Chen\",\"doi\":\"10.1109/IECON43393.2020.9255057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on multi-agent systems under the disturbances of parameter uncertainties, noises and external disturbances simultaneously, which are more suitable for the changing environments than most ideal models. For this case, the robust H∞ consensus control problem is studied to attenuate the influence of disturbances below a given level. We aim to design a consensus controller such that the closed-loop muti-agent systems reach the desired H∞ performance. By tools of Kronecker product, graph theory, and infinite horizon bounded real lemma, sufficient conditions for existence of H∞ consensus protocol design are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to show the validity of the method.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"165 6 1\",\"pages\":\"245-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9255057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9255057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps
This paper focuses on multi-agent systems under the disturbances of parameter uncertainties, noises and external disturbances simultaneously, which are more suitable for the changing environments than most ideal models. For this case, the robust H∞ consensus control problem is studied to attenuate the influence of disturbances below a given level. We aim to design a consensus controller such that the closed-loop muti-agent systems reach the desired H∞ performance. By tools of Kronecker product, graph theory, and infinite horizon bounded real lemma, sufficient conditions for existence of H∞ consensus protocol design are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to show the validity of the method.