关于Lucas-balancing zeta函数

IF 0.3 Q4 MATHEMATICS
Debismita Behera, Utkal Keshari Dutta, P. Ray
{"title":"关于Lucas-balancing zeta函数","authors":"Debismita Behera, Utkal Keshari Dutta, P. Ray","doi":"10.12697/ACUTM.2018.22.07","DOIUrl":null,"url":null,"abstract":"In the present study a new modication of Riemann zeta function known as Lucas-balancing zeta function is introduced. The Lucas-balancing zeta function admits its analytic continuation over the whole complex plane except its poles. This series converges to a fixed rational number − ½ at negative odd integers. Further, in accordance to Dirichlet L-function, the analytic continuation of Lucas-balancing L-function is also discussed.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"57 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Lucas-balancing zeta function\",\"authors\":\"Debismita Behera, Utkal Keshari Dutta, P. Ray\",\"doi\":\"10.12697/ACUTM.2018.22.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study a new modication of Riemann zeta function known as Lucas-balancing zeta function is introduced. The Lucas-balancing zeta function admits its analytic continuation over the whole complex plane except its poles. This series converges to a fixed rational number − ½ at negative odd integers. Further, in accordance to Dirichlet L-function, the analytic continuation of Lucas-balancing L-function is also discussed.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,引入了一种新的黎曼zeta函数的修正,即卢卡斯平衡zeta函数。lucas平衡zeta函数在除极点外的整个复平面上允许其解析延拓。这个级数在负奇数处收敛于一个固定的有理数- 1 / 2。进一步,根据Dirichlet l -函数,讨论了Lucas-balancing l -函数的解析延拓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Lucas-balancing zeta function
In the present study a new modication of Riemann zeta function known as Lucas-balancing zeta function is introduced. The Lucas-balancing zeta function admits its analytic continuation over the whole complex plane except its poles. This series converges to a fixed rational number − ½ at negative odd integers. Further, in accordance to Dirichlet L-function, the analytic continuation of Lucas-balancing L-function is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信