包含形状的标签一致判别字典学习:一种检测和分割图像中多类物体的方法

M. Marsousi, Xingyu Li, K. Plataniotis
{"title":"包含形状的标签一致判别字典学习:一种检测和分割图像中多类物体的方法","authors":"M. Marsousi, Xingyu Li, K. Plataniotis","doi":"10.1109/ICIP.2016.7532453","DOIUrl":null,"url":null,"abstract":"This paper introduces a segmentation approach, where a discriminative dictionary with objects' shape information is learned, followed by a sparse representation based segmentation process. In contrast with state-of-the-art sparse representation classification methods using discriminative dictionary learning, the proposed method learns a discriminative dictionary containing both intensity and shape information of object classes, in which shape information is collected and represented in the form of binarized masks. Object segmentation is achieved through an iterative process, including sparse representation, shape estimation, and shape refinement. The introduced method is evaluated and compared to state-of-the-art sparse representation based segmentation methods, and demonstrated better segmentation performance.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"38 1","pages":"729-733"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shape-included label-consistent discriminative dictionary learning: An approach to detect and segment multi-class objects in images\",\"authors\":\"M. Marsousi, Xingyu Li, K. Plataniotis\",\"doi\":\"10.1109/ICIP.2016.7532453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a segmentation approach, where a discriminative dictionary with objects' shape information is learned, followed by a sparse representation based segmentation process. In contrast with state-of-the-art sparse representation classification methods using discriminative dictionary learning, the proposed method learns a discriminative dictionary containing both intensity and shape information of object classes, in which shape information is collected and represented in the form of binarized masks. Object segmentation is achieved through an iterative process, including sparse representation, shape estimation, and shape refinement. The introduced method is evaluated and compared to state-of-the-art sparse representation based segmentation methods, and demonstrated better segmentation performance.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"38 1\",\"pages\":\"729-733\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种基于物体形状信息的判别字典分割方法,然后进行基于稀疏表示的分割处理。与目前使用判别字典学习的稀疏表示分类方法相比,该方法学习了一个包含物体类的强度和形状信息的判别字典,其中形状信息被收集并以二值化掩模的形式表示。目标分割是通过一个迭代过程来实现的,包括稀疏表示、形状估计和形状细化。将该方法与目前最先进的基于稀疏表示的分割方法进行了评估和比较,结果表明该方法具有更好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape-included label-consistent discriminative dictionary learning: An approach to detect and segment multi-class objects in images
This paper introduces a segmentation approach, where a discriminative dictionary with objects' shape information is learned, followed by a sparse representation based segmentation process. In contrast with state-of-the-art sparse representation classification methods using discriminative dictionary learning, the proposed method learns a discriminative dictionary containing both intensity and shape information of object classes, in which shape information is collected and represented in the form of binarized masks. Object segmentation is achieved through an iterative process, including sparse representation, shape estimation, and shape refinement. The introduced method is evaluated and compared to state-of-the-art sparse representation based segmentation methods, and demonstrated better segmentation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信