具有随机行为的无电容记忆性积分-放电神经元

Samuel D. Brown, Md Musabbir Adnan, Mst Shamim Ara Shawkat, G. Rose
{"title":"具有随机行为的无电容记忆性积分-放电神经元","authors":"Samuel D. Brown, Md Musabbir Adnan, Mst Shamim Ara Shawkat, G. Rose","doi":"10.1109/MWSCAS47672.2021.9531792","DOIUrl":null,"url":null,"abstract":"Stochasticity in networks of artificial spiking neurons has been theorized to unlock some of the adaptive learning capabilities of biology. To realize this behavior, systems must be designed to operate probabilistically, looking for patterns in a distribution rather than performing a deterministic mathematical function. In order to design these systems efficiently, stochasticity must be natively built into the system at its most fundamental level. Here, we propose an area-efficient non-leaky integrate-and-fire neuron which models membrane potential accumulation with a memristive device instead of a capacitor. The probabilistic behavior of the memristor ultimately generates stochastic firing patterns in the neuron output.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"6 1","pages":"175-178"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior\",\"authors\":\"Samuel D. Brown, Md Musabbir Adnan, Mst Shamim Ara Shawkat, G. Rose\",\"doi\":\"10.1109/MWSCAS47672.2021.9531792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochasticity in networks of artificial spiking neurons has been theorized to unlock some of the adaptive learning capabilities of biology. To realize this behavior, systems must be designed to operate probabilistically, looking for patterns in a distribution rather than performing a deterministic mathematical function. In order to design these systems efficiently, stochasticity must be natively built into the system at its most fundamental level. Here, we propose an area-efficient non-leaky integrate-and-fire neuron which models membrane potential accumulation with a memristive device instead of a capacitor. The probabilistic behavior of the memristor ultimately generates stochastic firing patterns in the neuron output.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"6 1\",\"pages\":\"175-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工尖峰神经元网络的随机性已被理论化,以解锁生物学的一些适应性学习能力。为了实现这种行为,系统必须被设计成以概率方式运行,在分布中寻找模式,而不是执行确定性的数学函数。为了有效地设计这些系统,必须在最基本的层面上将随机性内置到系统中。在这里,我们提出了一种面积效率高的非泄漏整合-放电神经元,它用记忆器件代替电容器来模拟膜电位积累。忆阻器的概率行为最终在神经元输出中产生随机放电模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior
Stochasticity in networks of artificial spiking neurons has been theorized to unlock some of the adaptive learning capabilities of biology. To realize this behavior, systems must be designed to operate probabilistically, looking for patterns in a distribution rather than performing a deterministic mathematical function. In order to design these systems efficiently, stochasticity must be natively built into the system at its most fundamental level. Here, we propose an area-efficient non-leaky integrate-and-fire neuron which models membrane potential accumulation with a memristive device instead of a capacitor. The probabilistic behavior of the memristor ultimately generates stochastic firing patterns in the neuron output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信