可行性确定的动态抽样

Yijie Peng, Jie Song, Jie Xu, E. Chong
{"title":"可行性确定的动态抽样","authors":"Yijie Peng, Jie Song, Jie Xu, E. Chong","doi":"10.1109/COASE.2018.8560526","DOIUrl":null,"url":null,"abstract":"We formulate the sampling allocation decision for feasibility determination as a dynamic policy in a Bayesian setting. This new formulation addresses the limitations of previous static optimization formulation. In an approximate dynamic programming paradigm, we propose an approximately optimal allocation policy that maximizes a single-feature of the value function one-step ahead. Numerical results demonstrate the efficiency of the proposed method.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"25 1","pages":"887-892"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Sampling for Feasibility Determination\",\"authors\":\"Yijie Peng, Jie Song, Jie Xu, E. Chong\",\"doi\":\"10.1109/COASE.2018.8560526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate the sampling allocation decision for feasibility determination as a dynamic policy in a Bayesian setting. This new formulation addresses the limitations of previous static optimization formulation. In an approximate dynamic programming paradigm, we propose an approximately optimal allocation policy that maximizes a single-feature of the value function one-step ahead. Numerical results demonstrate the efficiency of the proposed method.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"25 1\",\"pages\":\"887-892\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将可行性确定的抽样分配决策表述为贝叶斯环境下的动态策略。这种新的配方解决了以前静态优化配方的局限性。在近似动态规划范例中,我们提出了一种近似最优分配策略,该策略使价值函数的单个特征提前一步最大化。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Sampling for Feasibility Determination
We formulate the sampling allocation decision for feasibility determination as a dynamic policy in a Bayesian setting. This new formulation addresses the limitations of previous static optimization formulation. In an approximate dynamic programming paradigm, we propose an approximately optimal allocation policy that maximizes a single-feature of the value function one-step ahead. Numerical results demonstrate the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信