$\mathcal{C}^r$-可微循环的正切扩展

'Agota Figula, P. Nagy
{"title":"$\\mathcal{C}^r$-可微循环的正切扩展","authors":"'Agota Figula, P. Nagy","doi":"10.5486/pmd.2020.8818","DOIUrl":null,"url":null,"abstract":"The aim of our paper is to generalize the tangent prolongation of Lie groups to non-associative multiplications and to examine how the weak associative and weak inverse properties are transferred to the multiplication defined on the tangent bundle. We obtain that the tangent prolongation of a $\\mathcal{C}^r$-differentiable loop ($r\\geq 1$) is a $\\mathcal{C}^{r-1}$-differentiable loop that acquires the classical weak inverse and weak associative properties of the initial loop.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tangent prolongation of $\\\\mathcal{C}^r$-differentiable loops\",\"authors\":\"'Agota Figula, P. Nagy\",\"doi\":\"10.5486/pmd.2020.8818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of our paper is to generalize the tangent prolongation of Lie groups to non-associative multiplications and to examine how the weak associative and weak inverse properties are transferred to the multiplication defined on the tangent bundle. We obtain that the tangent prolongation of a $\\\\mathcal{C}^r$-differentiable loop ($r\\\\geq 1$) is a $\\\\mathcal{C}^{r-1}$-differentiable loop that acquires the classical weak inverse and weak associative properties of the initial loop.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5486/pmd.2020.8818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5486/pmd.2020.8818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是将李群的切线扩展推广到非关联乘法,并研究如何将弱关联和弱逆性质转移到定义在切线束上的乘法上。我们得到了一个$\mathcal{C}^r$ -可微环($r\geq 1$)的正切延伸是一个获得初始环的经典弱逆和弱关联性质的$\mathcal{C}^{r-1}$ -可微环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tangent prolongation of $\mathcal{C}^r$-differentiable loops
The aim of our paper is to generalize the tangent prolongation of Lie groups to non-associative multiplications and to examine how the weak associative and weak inverse properties are transferred to the multiplication defined on the tangent bundle. We obtain that the tangent prolongation of a $\mathcal{C}^r$-differentiable loop ($r\geq 1$) is a $\mathcal{C}^{r-1}$-differentiable loop that acquires the classical weak inverse and weak associative properties of the initial loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信