{"title":"巴拿赫代数上b锥巴拿赫空间的新不动点结果","authors":"H. Afshari, Hadi Shojaat, A. Fulga","doi":"10.4995/agt.2022.15571","DOIUrl":null,"url":null,"abstract":"Recently Zhu and Zhai studied the concepts of cone b-norm and cone b-Banach space as generalizations of cone b-metric spaces and theygave a definition of ϕ-operator and obtained some new fixed point theorems in cone b-Banach spaces over Banach algebras by usingϕ-operator. In this paper we propose a notion of quasi-cone over Banach algebras, then by utilizing some new conditions andfollowing their work with introducing two mappings $\\mathcal{T}$ and $\\mathcal{S}$ we improve the fixed point theorems to the commonfixed point theorems. An example is given to illustrate the usability of the obtained results.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Common new fixed point results on b-cone Banach spaces over Banach algebras\",\"authors\":\"H. Afshari, Hadi Shojaat, A. Fulga\",\"doi\":\"10.4995/agt.2022.15571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently Zhu and Zhai studied the concepts of cone b-norm and cone b-Banach space as generalizations of cone b-metric spaces and theygave a definition of ϕ-operator and obtained some new fixed point theorems in cone b-Banach spaces over Banach algebras by usingϕ-operator. In this paper we propose a notion of quasi-cone over Banach algebras, then by utilizing some new conditions andfollowing their work with introducing two mappings $\\\\mathcal{T}$ and $\\\\mathcal{S}$ we improve the fixed point theorems to the commonfixed point theorems. An example is given to illustrate the usability of the obtained results.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2022.15571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2022.15571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Common new fixed point results on b-cone Banach spaces over Banach algebras
Recently Zhu and Zhai studied the concepts of cone b-norm and cone b-Banach space as generalizations of cone b-metric spaces and theygave a definition of ϕ-operator and obtained some new fixed point theorems in cone b-Banach spaces over Banach algebras by usingϕ-operator. In this paper we propose a notion of quasi-cone over Banach algebras, then by utilizing some new conditions andfollowing their work with introducing two mappings $\mathcal{T}$ and $\mathcal{S}$ we improve the fixed point theorems to the commonfixed point theorems. An example is given to illustrate the usability of the obtained results.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.