B. Loveridge, Tori R. Tucker, Melanie St Laurent, Scott A. Hepford, M. Alexander, J. Lakey
{"title":"动态糖尿病解决方案:生理性胰岛素再敏化","authors":"B. Loveridge, Tori R. Tucker, Melanie St Laurent, Scott A. Hepford, M. Alexander, J. Lakey","doi":"10.33140/mcr.06.08.03","DOIUrl":null,"url":null,"abstract":"Diabetes is a disease currently affecting over 30 million Americans and is a leading cause of amputation, blindness, and chronic kidney disease. Treatment of diabetes with medications and lifestyle modifications alone have not eliminated these complications, because in part they lack the ability to restore the periodic cycles and rest periods of insulin that exist in healthy physiology. Insulin is excreted in a cyclical and oscillatory pattern by the pancreas, that is critical to maintain adequate insulin sensitivity at the insulin receptor level. Administration of exogenous insulin bio identically matching this physiologic profile is more effective at controlling blood glucose level and reducing complications of diabetes than standard drug therapy and lifestyle modifications alone. This matching of physiological insulin helps reduce inflammatory cascades responsible for a number of diabetic complications. In this article, we will review how insulin is secreted and functions physiologically and highlight a dynamic insulin delivery modality that mimics normal secretion profiles. This biomimicry reduces insulin exposure, which appears to reduce the progression to or worsening of insulin resistance. We will review how administration of insulin in this manner has been associated with reduction of diabetic complications.","PeriodicalId":9304,"journal":{"name":"British Medical Journal (Clinical research ed.)","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic diabetes solutions: physiologic insulin resensitization\",\"authors\":\"B. Loveridge, Tori R. Tucker, Melanie St Laurent, Scott A. Hepford, M. Alexander, J. Lakey\",\"doi\":\"10.33140/mcr.06.08.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a disease currently affecting over 30 million Americans and is a leading cause of amputation, blindness, and chronic kidney disease. Treatment of diabetes with medications and lifestyle modifications alone have not eliminated these complications, because in part they lack the ability to restore the periodic cycles and rest periods of insulin that exist in healthy physiology. Insulin is excreted in a cyclical and oscillatory pattern by the pancreas, that is critical to maintain adequate insulin sensitivity at the insulin receptor level. Administration of exogenous insulin bio identically matching this physiologic profile is more effective at controlling blood glucose level and reducing complications of diabetes than standard drug therapy and lifestyle modifications alone. This matching of physiological insulin helps reduce inflammatory cascades responsible for a number of diabetic complications. In this article, we will review how insulin is secreted and functions physiologically and highlight a dynamic insulin delivery modality that mimics normal secretion profiles. This biomimicry reduces insulin exposure, which appears to reduce the progression to or worsening of insulin resistance. We will review how administration of insulin in this manner has been associated with reduction of diabetic complications.\",\"PeriodicalId\":9304,\"journal\":{\"name\":\"British Medical Journal (Clinical research ed.)\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Medical Journal (Clinical research ed.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/mcr.06.08.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Medical Journal (Clinical research ed.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/mcr.06.08.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diabetes is a disease currently affecting over 30 million Americans and is a leading cause of amputation, blindness, and chronic kidney disease. Treatment of diabetes with medications and lifestyle modifications alone have not eliminated these complications, because in part they lack the ability to restore the periodic cycles and rest periods of insulin that exist in healthy physiology. Insulin is excreted in a cyclical and oscillatory pattern by the pancreas, that is critical to maintain adequate insulin sensitivity at the insulin receptor level. Administration of exogenous insulin bio identically matching this physiologic profile is more effective at controlling blood glucose level and reducing complications of diabetes than standard drug therapy and lifestyle modifications alone. This matching of physiological insulin helps reduce inflammatory cascades responsible for a number of diabetic complications. In this article, we will review how insulin is secreted and functions physiologically and highlight a dynamic insulin delivery modality that mimics normal secretion profiles. This biomimicry reduces insulin exposure, which appears to reduce the progression to or worsening of insulin resistance. We will review how administration of insulin in this manner has been associated with reduction of diabetic complications.