Mahzad Firouzi, M. Giahi, M. Najafi, S. Homami, Seyed Husain Hashemi Mousavi
{"title":"用室温离子液体修饰碳陶瓷电极测定氯沙坦的电化学行为和伏安法","authors":"Mahzad Firouzi, M. Giahi, M. Najafi, S. Homami, Seyed Husain Hashemi Mousavi","doi":"10.1166/sl.2020.4223","DOIUrl":null,"url":null,"abstract":"Herein, an electrochemical sensor has been proposed for the determination of losartan (LOS) in pharmaceutical formulations. A room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM.PF6) was applied to fabricate a modified carbon ceramic electrode\n (IL-CCE). The electrochemical studies were performed by the cyclic and linear sweep voltammetry (CV and LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques. The anodic peak currents were increased with the LOS concentration and indicated a linear dynamic range\n from 20 to 200 μM and a detection limit of 11.7 μM (S/N = 3) under the optimized conditions. Satisfactory results were obtained by analysis of LOS in pharmaceutical tablets.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"11 1","pages":"322-327"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Behavior and Voltammetric Determination of Losartan Using Carbon Ceramic Electrode Modified with Room Temperature Ionic Liquid\",\"authors\":\"Mahzad Firouzi, M. Giahi, M. Najafi, S. Homami, Seyed Husain Hashemi Mousavi\",\"doi\":\"10.1166/sl.2020.4223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, an electrochemical sensor has been proposed for the determination of losartan (LOS) in pharmaceutical formulations. A room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM.PF6) was applied to fabricate a modified carbon ceramic electrode\\n (IL-CCE). The electrochemical studies were performed by the cyclic and linear sweep voltammetry (CV and LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques. The anodic peak currents were increased with the LOS concentration and indicated a linear dynamic range\\n from 20 to 200 μM and a detection limit of 11.7 μM (S/N = 3) under the optimized conditions. Satisfactory results were obtained by analysis of LOS in pharmaceutical tablets.\",\"PeriodicalId\":21781,\"journal\":{\"name\":\"Sensor Letters\",\"volume\":\"11 1\",\"pages\":\"322-327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sl.2020.4223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical Behavior and Voltammetric Determination of Losartan Using Carbon Ceramic Electrode Modified with Room Temperature Ionic Liquid
Herein, an electrochemical sensor has been proposed for the determination of losartan (LOS) in pharmaceutical formulations. A room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM.PF6) was applied to fabricate a modified carbon ceramic electrode
(IL-CCE). The electrochemical studies were performed by the cyclic and linear sweep voltammetry (CV and LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques. The anodic peak currents were increased with the LOS concentration and indicated a linear dynamic range
from 20 to 200 μM and a detection limit of 11.7 μM (S/N = 3) under the optimized conditions. Satisfactory results were obtained by analysis of LOS in pharmaceutical tablets.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.