{"title":"时间有限域上的多项式乘法 \\( O(n \\log n \\)","authors":"David Harvey, J. van der Hoeven","doi":"10.1145/3505584","DOIUrl":null,"url":null,"abstract":"Assuming a widely believed hypothesis concerning the least prime in an arithmetic progression, we show that polynomials of degree less than \\( n \\) over a finite field \\( \\mathbb {F}_q \\) with \\( q \\) elements can be multiplied in time \\( O (n \\log q \\log (n \\log q)) \\) , uniformly in \\( q \\) . Under the same hypothesis, we show how to multiply two \\( n \\) -bit integers in time \\( O (n \\log n) \\) ; this algorithm is somewhat simpler than the unconditional algorithm from the companion paper [22]. Our results hold in the Turing machine model with a finite number of tapes.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"48 1","pages":"1 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Polynomial Multiplication over Finite Fields in Time \\\\( O(n \\\\log n \\\\)\",\"authors\":\"David Harvey, J. van der Hoeven\",\"doi\":\"10.1145/3505584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming a widely believed hypothesis concerning the least prime in an arithmetic progression, we show that polynomials of degree less than \\\\( n \\\\) over a finite field \\\\( \\\\mathbb {F}_q \\\\) with \\\\( q \\\\) elements can be multiplied in time \\\\( O (n \\\\log q \\\\log (n \\\\log q)) \\\\) , uniformly in \\\\( q \\\\) . Under the same hypothesis, we show how to multiply two \\\\( n \\\\) -bit integers in time \\\\( O (n \\\\log n) \\\\) ; this algorithm is somewhat simpler than the unconditional algorithm from the companion paper [22]. Our results hold in the Turing machine model with a finite number of tapes.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"48 1\",\"pages\":\"1 - 40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3505584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3505584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
摘要
假设一个被广泛相信的关于等差数列中最小素数的假设,我们证明了在一个有限域\( \mathbb {F}_q \)上含有\( q \)元素的次数小于\( n \)的多项式可以在时间\( O (n \log q \log (n \log q)) \)上均匀地在\( q \)上相乘。在相同的假设下,我们展示了如何将两个\( n \)位整数在时间\( O (n \log n) \)上相乘;该算法比同伴论文[22]中的无条件算法要简单一些。我们的结果适用于图灵机模型中有限数量的磁带。
Polynomial Multiplication over Finite Fields in Time \( O(n \log n \)
Assuming a widely believed hypothesis concerning the least prime in an arithmetic progression, we show that polynomials of degree less than \( n \) over a finite field \( \mathbb {F}_q \) with \( q \) elements can be multiplied in time \( O (n \log q \log (n \log q)) \) , uniformly in \( q \) . Under the same hypothesis, we show how to multiply two \( n \) -bit integers in time \( O (n \log n) \) ; this algorithm is somewhat simpler than the unconditional algorithm from the companion paper [22]. Our results hold in the Turing machine model with a finite number of tapes.