损伤诱导的脊髓运动神经元凋亡发生在DNA单链断裂之前,并且依赖于p53和bax。

L. Martin, Zhiping Liu
{"title":"损伤诱导的脊髓运动神经元凋亡发生在DNA单链断裂之前,并且依赖于p53和bax。","authors":"L. Martin, Zhiping Liu","doi":"10.1002/NEU.10026","DOIUrl":null,"url":null,"abstract":"The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"1 1","pages":"181-97"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and Bax-dependent.\",\"authors\":\"L. Martin, Zhiping Liu\",\"doi\":\"10.1002/NEU.10026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.\",\"PeriodicalId\":16540,\"journal\":{\"name\":\"Journal of neurobiology\",\"volume\":\"1 1\",\"pages\":\"181-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NEU.10026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NEU.10026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

摘要

损伤诱导脊髓内神经元凋亡的机制尚不清楚。我们采用大鼠和小鼠外周神经-脊髓损伤模型诱导运动神经元变性。在该动物模型中,坐骨神经单侧撕脱引起运动神经元凋亡。我们测试了p53和Bax调节神经元凋亡的假设,DNA损伤是早期上游信号。成年小鼠和大鼠接受单侧撕脱,导致腰椎运动神经元在损伤后7-14天发生终末期凋亡。这种运动神经元凋亡在bax(-/-)和p53(-/-)小鼠中被阻断。采用单细胞凝胶电泳(comet assay)、免疫细胞化学和定量免疫金电镜检测运动神经元凋亡过程中的分子变化。损伤的运动神经元在5天内积累DNA单链断裂。P53在运动神经元核中积累,注定要经历凋亡。通过磷酸化P53的免疫检测发现,P53在病变后4-5天被功能性激活。凋亡前,Bax易位到线粒体,细胞色素c在细胞质中积累,caspase-3被激活。这些结果表明,成人脊髓运动神经元的凋亡受上游机制控制,包括DNA损伤和p53的激活,下游机制包括Bax和细胞色素c的上调及其易位、线粒体的积累和caspase-3的激活。我们认为,神经撕脱伤后的成人运动神经元死亡是DNA损伤诱导的p53和bax依赖性细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and Bax-dependent.
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信