频繁的定期项目集挖掘

S. Ruggieri
{"title":"频繁的定期项目集挖掘","authors":"S. Ruggieri","doi":"10.1145/1835804.1835840","DOIUrl":null,"url":null,"abstract":"Concise representations of frequent itemsets sacrifice readability and direct interpretability by a data analyst of the concise patterns extracted. In this paper, we introduce an extension of itemsets, called regular, with an immediate semantics and interpretability, and a conciseness comparable to closed itemsets. Regular itemsets allow for specifying that an item may or may not be present; that any subset of an itemset may be present; and that any non-empty subset of an itemset may be present. We devise a procedure, called RegularMine, for mining a set of regular itemsets that is a concise representation of frequent itemsets. The procedure computes a covering, in terms of regular itemsets, of the frequent itemsets in the class of equivalence of a closed one. We report experimental results on several standard dense and sparse datasets that validate the proposed approach.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"875 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Frequent regular itemset mining\",\"authors\":\"S. Ruggieri\",\"doi\":\"10.1145/1835804.1835840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concise representations of frequent itemsets sacrifice readability and direct interpretability by a data analyst of the concise patterns extracted. In this paper, we introduce an extension of itemsets, called regular, with an immediate semantics and interpretability, and a conciseness comparable to closed itemsets. Regular itemsets allow for specifying that an item may or may not be present; that any subset of an itemset may be present; and that any non-empty subset of an itemset may be present. We devise a procedure, called RegularMine, for mining a set of regular itemsets that is a concise representation of frequent itemsets. The procedure computes a covering, in terms of regular itemsets, of the frequent itemsets in the class of equivalence of a closed one. We report experimental results on several standard dense and sparse datasets that validate the proposed approach.\",\"PeriodicalId\":20529,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"875 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835804.1835840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

频繁项集的简洁表示牺牲了数据分析人员对所提取的简洁模式的可读性和直接可解释性。在本文中,我们引入了项目集的一种扩展,称为正则,具有直接的语义和可解释性,以及与闭项目集相当的简洁性。常规项集允许指定一个项可能存在或不存在;项集的任何子集都可以存在;并且项集的任何非空子集都可以存在。我们设计了一个称为RegularMine的过程,用于挖掘一组常规项目集,这些常规项目集是频繁项目集的简明表示。该过程计算了闭等价类中频繁项集的正则项集的覆盖。我们报告了几个标准密集和稀疏数据集的实验结果,验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequent regular itemset mining
Concise representations of frequent itemsets sacrifice readability and direct interpretability by a data analyst of the concise patterns extracted. In this paper, we introduce an extension of itemsets, called regular, with an immediate semantics and interpretability, and a conciseness comparable to closed itemsets. Regular itemsets allow for specifying that an item may or may not be present; that any subset of an itemset may be present; and that any non-empty subset of an itemset may be present. We devise a procedure, called RegularMine, for mining a set of regular itemsets that is a concise representation of frequent itemsets. The procedure computes a covering, in terms of regular itemsets, of the frequent itemsets in the class of equivalence of a closed one. We report experimental results on several standard dense and sparse datasets that validate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信