{"title":"素数有限域上超椭圆曲线点的重构","authors":"J. Gutierrez","doi":"10.3934/amc.2022022","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> be a prime and <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathbb{F}_p $\\end{document}</tex-math></inline-formula> the finite field with <inline-formula><tex-math id=\"M3\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> elements. We show how, when given an superelliptic curve <inline-formula><tex-math id=\"M4\">\\begin{document}$ Y^n+f(X) \\in \\mathbb{F}_p[X,Y] $\\end{document}</tex-math></inline-formula> and an approximation to <inline-formula><tex-math id=\"M5\">\\begin{document}$ (v_0,v_1) \\in \\mathbb{F}_p^2 $\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\"M6\">\\begin{document}$ v_1^n = -f(v_0) $\\end{document}</tex-math></inline-formula>, one can recover <inline-formula><tex-math id=\"M7\">\\begin{document}$ (v_0,v_1) $\\end{document}</tex-math></inline-formula> efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconstructing points of superelliptic curves over a prime finite field\",\"authors\":\"J. Gutierrez\",\"doi\":\"10.3934/amc.2022022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> be a prime and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathbb{F}_p $\\\\end{document}</tex-math></inline-formula> the finite field with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> elements. We show how, when given an superelliptic curve <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ Y^n+f(X) \\\\in \\\\mathbb{F}_p[X,Y] $\\\\end{document}</tex-math></inline-formula> and an approximation to <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ (v_0,v_1) \\\\in \\\\mathbb{F}_p^2 $\\\\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ v_1^n = -f(v_0) $\\\\end{document}</tex-math></inline-formula>, one can recover <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ (v_0,v_1) $\\\\end{document}</tex-math></inline-formula> efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2022022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2022022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
摘要
Let \begin{document}$ p $\end{document} be a prime and \begin{document}$ \mathbb{F}_p $\end{document} the finite field with \begin{document}$ p $\end{document} elements. We show how, when given an superelliptic curve \begin{document}$ Y^n+f(X) \in \mathbb{F}_p[X,Y] $\end{document} and an approximation to \begin{document}$ (v_0,v_1) \in \mathbb{F}_p^2 $\end{document} such that \begin{document}$ v_1^n = -f(v_0) $\end{document}, one can recover \begin{document}$ (v_0,v_1) $\end{document} efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.
Reconstructing points of superelliptic curves over a prime finite field
Let \begin{document}$ p $\end{document} be a prime and \begin{document}$ \mathbb{F}_p $\end{document} the finite field with \begin{document}$ p $\end{document} elements. We show how, when given an superelliptic curve \begin{document}$ Y^n+f(X) \in \mathbb{F}_p[X,Y] $\end{document} and an approximation to \begin{document}$ (v_0,v_1) \in \mathbb{F}_p^2 $\end{document} such that \begin{document}$ v_1^n = -f(v_0) $\end{document}, one can recover \begin{document}$ (v_0,v_1) $\end{document} efficiently, if the approximation is good enough. As consequence we provide an upper bound on the number of roots of such bivariate polynomials where the roots have certain restrictions. The results has been motivated by the predictability problem for non-linear pseudorandom number generators and, other potential applications to cryptography.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.