用carleman收缩原理重构非线性双曲方程的势

Dinh-Liem Nguyen, L. Nguyen, TrungDung Truong
{"title":"用carleman收缩原理重构非线性双曲方程的势","authors":"Dinh-Liem Nguyen, L. Nguyen, TrungDung Truong","doi":"10.48550/arXiv.2204.06060","DOIUrl":null,"url":null,"abstract":"We develop an efficient and convergent numerical method for solving the inverse problem of determining the potential of nonlinear hyperbolic equations from lateral Cauchy data. In our numerical method we construct a sequence of linear Cauchy problems whose corresponding solutions converge to a function that can be used to efficiently compute an approximate solution to the inverse problem of interest. The convergence analysis is established by combining the contraction principle and Carleman estimates. We numerically solve the linear Cauchy problems using a quasi-reversibility method. Numerical examples are presented to illustrate the efficiency of the method.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"875 1","pages":"239-248"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Carleman-based contraction principle to reconstruct the potential of nonlinear hyperbolic equations\",\"authors\":\"Dinh-Liem Nguyen, L. Nguyen, TrungDung Truong\",\"doi\":\"10.48550/arXiv.2204.06060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an efficient and convergent numerical method for solving the inverse problem of determining the potential of nonlinear hyperbolic equations from lateral Cauchy data. In our numerical method we construct a sequence of linear Cauchy problems whose corresponding solutions converge to a function that can be used to efficiently compute an approximate solution to the inverse problem of interest. The convergence analysis is established by combining the contraction principle and Carleman estimates. We numerically solve the linear Cauchy problems using a quasi-reversibility method. Numerical examples are presented to illustrate the efficiency of the method.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":\"875 1\",\"pages\":\"239-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.06060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.06060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种有效且收敛的数值方法,用于求解侧向柯西数据中非线性双曲方程势的反问题。在我们的数值方法中,我们构造了一个线性柯西问题序列,其对应的解收敛于一个函数,该函数可用于有效地计算感兴趣的反问题的近似解。结合收缩原理和Carleman估计建立了收敛性分析。利用拟可逆性方法对线性柯西问题进行了数值求解。数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Carleman-based contraction principle to reconstruct the potential of nonlinear hyperbolic equations
We develop an efficient and convergent numerical method for solving the inverse problem of determining the potential of nonlinear hyperbolic equations from lateral Cauchy data. In our numerical method we construct a sequence of linear Cauchy problems whose corresponding solutions converge to a function that can be used to efficiently compute an approximate solution to the inverse problem of interest. The convergence analysis is established by combining the contraction principle and Carleman estimates. We numerically solve the linear Cauchy problems using a quasi-reversibility method. Numerical examples are presented to illustrate the efficiency of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信