基于无碰撞人机交互的手部运动预测

Yiwei Wang, Xin Ye, Yezhou Yang, Wenlong Zhang
{"title":"基于无碰撞人机交互的手部运动预测","authors":"Yiwei Wang, Xin Ye, Yezhou Yang, Wenlong Zhang","doi":"10.1109/CVPRW.2017.72","DOIUrl":null,"url":null,"abstract":"We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive planning submodule is developed that takes the noisy movement prediction signal into consideration for optimization. We first collect a new human manipulation dataset that can supplement the previous publicly available dataset with motion capture data to serve as the ground truth of hand location. We then integrate the algorithm with a robot manipulator that can collaborate with human workers on a set of trained manipulation actions, and it is shown that such a robot system outperforms the one without movement prediction in terms of collision avoidance.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"43 1","pages":"492-493"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hand Movement Prediction Based Collision-Free Human-Robot Interaction\",\"authors\":\"Yiwei Wang, Xin Ye, Yezhou Yang, Wenlong Zhang\",\"doi\":\"10.1109/CVPRW.2017.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive planning submodule is developed that takes the noisy movement prediction signal into consideration for optimization. We first collect a new human manipulation dataset that can supplement the previous publicly available dataset with motion capture data to serve as the ground truth of hand location. We then integrate the algorithm with a robot manipulator that can collaborate with human workers on a set of trained manipulation actions, and it is shown that such a robot system outperforms the one without movement prediction in terms of collision avoidance.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"43 1\",\"pages\":\"492-493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个基于视觉的手部运动预测框架,用于现实世界人机协作场景的安全保障。我们首先提出了一个感知子模块,它只接受视觉数据并预测人类合作者的手部运动。然后开发了考虑运动预测信号噪声的机器人轨迹自适应规划子模块进行优化。我们首先收集了一个新的人类操作数据集,该数据集可以用动作捕捉数据补充以前公开可用的数据集,作为手部位置的基础真相。然后,我们将该算法与一个可以与人类工人在一组训练过的操作动作上协作的机器人操作器集成,结果表明,这样的机器人系统在避免碰撞方面优于没有运动预测的机器人系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Movement Prediction Based Collision-Free Human-Robot Interaction
We present a framework from vision based hand movement prediction in a real-world human-robot collaborative scenario for safety guarantee. We first propose a perception submodule that takes in visual data solely and predicts human collaborator's hand movement. Then a robot trajectory adaptive planning submodule is developed that takes the noisy movement prediction signal into consideration for optimization. We first collect a new human manipulation dataset that can supplement the previous publicly available dataset with motion capture data to serve as the ground truth of hand location. We then integrate the algorithm with a robot manipulator that can collaborate with human workers on a set of trained manipulation actions, and it is shown that such a robot system outperforms the one without movement prediction in terms of collision avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信